
The Java CoG Kit User Manual
Version 4.0-pre-alpha

MCS Technical Memorandum ANL/MCS-TM-259

Revisions March 14, 2003, July 18, 2003, Nov 28, 2003, Jan 14, 2004

∗The Java CoG Kit Team
Argonne National Laboratory

Mathematics and Computer Science Division
9700 S. Cass Ave

Argonne, IL 60439

∗ Coresponding Editor
(630) 252 0472

gregor@mcs.anl.gov

Location of Manual:

http://www.globus.org/cog/manual-cog2.pdf

Be kind to your environment and
do not print

this frequently changing manual.

(c) Argonne National Laboratory. All rights reserved.

March 9, 2004

gregor@mcs.anl.gov
http://www.globus.org/cog/manual-cog2.pdf

Contents

1 Preface 7

1.1 Participation Opportunities. 7

1.2 Grids . 8

1.3 Intended Audience. 8

1.4 Resources. 9

1.4.1 Project Website. 9

1.4.2 Bug Reporting . 9

1.4.3 Mailing Lists . 10

1.4.4 Sourcecode Repository. 11

1.5 About the Manual. 11

1.5.1 Conventions . 11

1.6 Manual Maintainer . 12

1.7 Contributors. 13

1.8 Administrative Contact. 13

1.9 Acknowledgments . 13

2 License 14

2.1 Project Registration. 14

2.2 Globus Toolkit . 16

2.2.1 Globus Toolkit Public License (GTPL). 16

2.2.2 Globus Toolkit Contributor Liceense. 18

2.3 Java CoG Kit . 20

2.3.1 Java CoG Kit Public License (JCoGPL). 20

2.3.2 Java CoG Kit Contributor Liceense. 22

2.4 Other Licences. 24

2.4.1 jglobus . 24

2.4.2 ogce. 24

2.4.3 Others. 24

2.5 GNU Public Licence . 24

1

3 Introduction 25

3.1 Overview . 25

3.2 History . 25

3.2.1 Metacomputing. 25

3.2.2 CoG Kits . 25

4 Installation 26

4.1 Download . 26

4.2 CVS Release Tags. 26

4.2.1 Prerequisites. 26

4.3 Downloading the Java CoG Kit. 26

4.4 Compiling the Java CoG Kit. 27

4.5 Compiling the complete distribution. 27

4.6 Compiling individual modules. 27

4.7 Using the Java CoG Kit. 27

4.8 Setup . 28

5 Contributing 29

5.1 Creating a module. 29

5.1.1 Build files. 29

5.1.2 Libraries . 29

5.1.3 Source . 30

5.1.4 Using PMD. 30

5.1.5 Documenting the modules. 30

5.1.6 Maintaining a module. 30

5.1.7 Launchers. 30

5.1.8 Webstart . 30

5.2 Coding Guidelines for the Java CoG Kit. 30

5.2.1 Imports . 30

5.2.2 Indentation. 30

5.2.3 Brackets. 30

5.2.4 Variables . 30

5.2.5 Instance Variables. 31

5.3 One-Liners . 31

5.3.1 Logging. 31

2

5.3.2 Testing . 31

5.3.3 Internationalization. 31

5.3.4 Library Reuse. 31

5.3.5 Exceptions . 31

6 Modules 32

6.1 util . 32

6.2 certrequest. 32

7 Core 33

7.1 Introduction. 33

7.2 Installation . 33

7.2.1 Download. 33

7.2.2 Compile. 34

7.2.3 Configuration. 34

7.2.4 Examples. 34

7.3 Design. 35

7.3.1 ExecutableObject. 36

7.3.2 Task. 36

7.3.3 Specification. 37

7.3.4 TaskGraph . 40

7.3.5 Status. 41

7.3.6 Handlers . 42

7.4 Programmer’s Guide. 44

7.4.1 Executing a remote job execution task. 44

7.4.2 Executing a third party file transfer task. 48

7.4.3 Executing a simple TaskGraph (DAG). 50

7.4.4 Executing a hierarchical TaskGraph. 52

7.4.5 Writing a custom TaskHandler. 53

7.5 jglobus. 54

8 Karajan 55

8.1 Installation . 55

8.1.1 Obtaining the Source Code. 55

8.1.2 Compiling Karajan. 55

8.2 Using Karajan. 56

3

8.2.1 Command Line Interface. 56

8.2.2 Graphical Interface. 56

8.3 Language Specification. 58

8.3.1 Concepts. 58

8.3.2 Parallelism . 62

8.3.3 Iterators. 63

8.3.4 Templates. 65

8.3.5 Grid-related Elements. 65

8.3.6 Explicit Error Handling. 68

8.3.7 Miscellaneous Elements. 68

8.3.8 Functions. 69

8.4 Supported Handlers. 69

8.5 Include Search Path. 71

8.5.1 System Defaults. 71

8.6 Architecture. 72

8.6.1 The Loading Process. 72

8.6.2 The execution model. 72

8.6.3 Task Scheduling. 74

8.7 Checkpointing. 75

8.7.1 Checkpoint Creation. 75

8.7.2 Restoring from a Checkpoint. 76

8.8 Quick Element Reference. 77

8.8.1 allocateHost. 77

8.8.2 checkpoint . 77

8.8.3 default . 77

8.8.4 echo. 77

8.8.5 elementDef. 77

8.8.6 executeJava. 78

8.8.7 for . 78

8.8.8 foreach . 78

8.8.9 function:contains. 78

8.8.10 function:numberFormat. 78

8.8.11 function:readFile. 79

8.8.12 function:UID . 79

8.8.13 generateError. 79

4

8.8.14 gridExecute. 79

8.8.15 gridTransfer. 79

8.8.16 ignoreErrors . 80

8.8.17 include . 80

8.8.18 nonCheckpointable. 80

8.8.19 javaBean. 80

8.8.20 javaBean>invokeVoid 80

8.8.21 javaBean>setProperty 80

8.8.22 parallel . 81

8.8.23 project . 81

8.8.24 restartOnError. 81

8.8.25 scheduler. 81

8.8.26 scheduler>grid . 81

8.8.27 scheduler>grid>host . 81

8.8.28 scheduler>grid>host>service 81

8.8.29 scheduler>taskHandler. 82

8.8.30 scheduler>taskHandler>securityContext 82

8.8.31 scheduler>taskHandler>securityContext>property. . . . 82

8.8.32 sequential. 82

8.8.33 setvar. 82

8.8.34 template. 82

8.8.35 templateDef. 83

8.8.36 wait . 83

9 Graph Editor 84

9.1 Configuring . 84

9.2 Running. 84

9.3 Using The Graph Editor. 84

9.3.1 The Swing Target. 85

9.3.2 The HTML Target . 86

9.3.3 The PostScript Target. 87

9.3.4 The Remote Target. 88

9.4 Graph file format . 88

9.5 API . 89

9.6 Scalability. 91

5

10 Portlet 92

10.0.1 Deployment. 92

10.0.2 Directory structure of portlet module. 93

10.0.3 Prerequisite - Jetspeed. 93

10.0.4 Prerequisite - MyProxy. 94

10.0.5 Configuration. 94

10.0.6 Installation . 95

11 Java CoG Kit QoS Module 96

11.0.7 QGS Installation Prerequists. 96

11.0.8 QGS Compilation and service deployment. 96

11.0.9 Examples. 97

11.1 Resources. 98

11.2 Common . 98

11.3 All . 98

12 Command Tools 99

13 grid-cert-request 100

6

1 Preface

This manual contains a number of high-level modules of the Java CoG Kit that are
not distributed as part of the Globus Toolkit version 2, 3, or 4. We believe these
components are valuable add-on components to any Grid Toolkit. The popularity
of the Java CoG Kit has lead to the fact that it is now distributed in part with
the Globus Toolkit. Often users of the Globus Toolkit, do not know that they use
components contributed by the Java CoG Kit.

We hope that you will find the components described in this manual help you
making use of the Grid more easily.

The Java CoG Kit is a very open project, and invites participation by others. Thus,
we have started to involve the community more strongly into the development of
the Java CoG Kit. If you have components that you like to contribute to the Java
CoG Kit, please notify us.

If you like to participate in the development of the Java CoG Kit, I recommend that
you contact us through a simple e-mail as described in Section1.1.

1.1 Participation Opportunities

To participate, please send a mail with your intend and abilities to

Gregor@mcs.anl.gov : .

Please, follow the simple subject mail syntax rule

“APPLICATION CV: <Firstname><Lastname>”,

where CV is an abbreviation for community volunteer. All mail not following this
rule will be caught by a spam filter and automatically deleted.

We have a variety of open projects that could provide ideal opportunities to get
engaged in furthering the development of Grid computing. Some of these projects
could also be given for credit as independent studies, or lead to a Masters Thesis
project. If you decide to integrate them in your curriculum it is best to develop an
agreement between the Java CoG Kit project, your advisor, and yourself. We con-
ducted such activities with volunteers from Canada, UK, Switzerland, and several
local and remote students and professionals in the US.

Doe to the nature of volunteering, these applications are usually less formal than
real applications, but we must know your affiliation, your address and citizenship.
To volunteer, you ought to be committed. It is of no help to us if you volunteer one
week and than you drop the project in the next week.

If you apply for community volunteer positions make sure you provide us with
evidence that you can conduct the project you or we suggest.

Community volunteer projects are a good start for a paid internship or job opportu-
nities. Other paid opportunities for undergraduate and graduate appointments are
updated regularly on the Web page. Often it is a good idea to have your advisor

7

.

directly talk to us and recommend you over the phone, or in one of the many meet-
ings we participate in. Paid assistantships are in general restricted to US citizens
and permanent residents.

All contributors have to submit a contributor license.

1.2 Grids

Grids are an important development in the discipline of computer science and en-
gineering. Rapid progress is being made on several levels, including the definition
of the terminology, the design of an architecture and framework, the application in
the scientific problem solving process, and the creation of physical instantiations
of Grids on a production level.

A small overview about the Grid can be found in a draft paper entitledGestalt of
the Grid[1]

Article : http://www.mcs.anl.gov/˜gregor/bib/papers/vonLaszewski--gestalt.

pdf

This article provides an overview of important influences, developments, and tech-
nologies that are shaping state-of-the-art Grid computing.

What motivates the Grid approach?
What is a Grid?
What is the architecture of a Grid?
Which Grid research activities are performed?
How do researchers use a Grid?
What will the future bring?

A slightly differnt focus on middleware is presented in a paper entitled “Grid Mid-
dleware” [2]

Article : http://www.mcs.anl.gov/˜gregor/papers/vonLaszewski-gridmiddleware.

pdf

Other CoG Kit related papers can be found at

References von Laszewski :http://www.mcs.anl.gov/˜gregor/bib/

1

1.3 Intended Audience

This manual is intended for the intermediate Grid programmer that would like to
access the Globus Toolkit functionality through Java. We assume that the reader of
this manual is familiar with Java. If not, general information about Java is available
through the Web site at SUN Microsystems or at IBM:

SUN : http://java.sun.com/

IBM : http://www.ibm.com/java/

1 the bib file needs to be updated. Also there is a collection at www.cogkits.org

8

http://www.mcs.anl.gov/~gregor/bib/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/bib/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridmiddleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridmiddleware.pdf
http://www.mcs.anl.gov/~gregor/bib/
http://java.sun.com/
http://www.ibm.com/java/

In general, this manual serves as a basic introduction to a subset of functionality
provided by the Java CoG Kit. This manual does not explain every package, class,
and method. This manual is intended to show you that the Java CoG Kit provides
an effective way of accessing the Grid through Java.

Developers are encouraged to inspect the JavaDoc documentation.2

We further expect that you are familiar with the Globus Toolkit and have access
to a Globus Toolkit installation. If you do not, the Globus web page provides
information about the details and how to install it.

Globus Toolkit : http://www.globus.org

The Globus Toolkit development us undergoing some significant changes. If you
currently use Globus Toolkit 2.4.x, we do recommend to evaluate a switch to ver-
sion 3.2 carefully. This is in anticipation the Globus Toolkit version 3.2 will be
replaced with Toolkit version 4.x during the year 2004. The Java CoG Kit pro-
vides so far an abstraction that protects the application user from the differences
between these versions.

In case you develop with the Java CoG Kit APIs a switch between versions of the
Globus Toolkit is simplified.

1.4 Resources

We support our efforts through a web site on which you find a bug tracking system,
Mailing lists, and the code repository.

1.4.1 Project Website

Online information about the Java CoG Kit can be found on its home page.

Home page : http://www.globus.org/cog/java/

Here you can find links to the manual, the code, and some basic information about
the project. Besides this page we also maintain a project-related Web page that
reports on the Java and Python Commodity Grid Kits.

Project : http://www.cogkits.org/

1.4.2 Bug Reporting

We are using the Bugzilla system from mozilla.org to track bugs and requests for
enhancements for the Java CoG Kit. Bugzilla provides you with an interface that
guides you on submitting the bug. The link to the bug system is located at

CoG Kit Bugzilla : http://www.globus.org/cog/contact/bugs/

In case you like to report bugs for other components of the Globus Toolkit you can
use the main link at

Globus Toolkit Bugzilla : http://bugzilla.globus.org/globus/

2 we need to make sure that we have in the ant script a publication mechanism of the JavaDoc. We
need to document how we update the web page, and manual. E.g. in the doc directory we say “make
; make publish

9

http://www.globus.org
http://www.globus.org/cog/java/
http://www.cogkits.org/
http://www.globus.org/cog/contact/bugs/
http://bugzilla.globus.org/globus/

To use it you need to first create an account. To report a bug you need to be
precise in your description and include operating system, JVM version, and other
information that can be used to better identify or replicate the condition of your
error. This also includes the version of Globus Toolkit services you use.

1.4.3 Mailing Lists

We have established a number of mailing lists to simplify the communication with
the group of developers and users. Restrictions on the use of the mailing list are
outlined below.

Policy

No Advertisements : We do not allow you to use the mailing lists in any form of advertisement for
your products or services. In response to spam mail on this mailing list, we
have disabled the ability to post messages to this list if you are not subscribed
to it.

Subscription Required : If you send a message to the list and are not subscribed or you use an email
address different from the one you subscribed with, your message will not
be posted to the list, and you will not receive any notification that your mes-
sage wasnot posted. Hence, if you send a message to the list and do not
subsequently see your message on the list or in the list archive, verify that
you are using an email address that is subscribed to the list, and then retry
your posting.

Subscribed Lists : To verify that you are subscribed to the list, send an email message from the
email account you subscribed from tomajordomo@globus.org with
the single word “which” in the body of the message. You will receive in re-
sponse a message listing the lists to which your email address is subscribed.
If this mailing list does not appear in the list you receive, you are probably
subscribed to the list under a different address and you will not be able to
post messages to the list using your current address.

Subscription Center

If you would like to be notified of CoG Kit release updates, visit our convenient
subscription center at

Subscribe : http://www.globus.org/cog/contact/

Other Globus related mailing lists can be found on the Globus web page

Subscribe : http://www.globus.org/about/subscriptions.html

Note that you can use these web pages to unsubscribe from the lists. All mailing
list are maintained with majordomo. However, we did have to disable thewho
function in order to protect the members from spam bots.

News

News about the Java CoG Kit is sent in irregular intervals (the frequency is monthly
to every four month) by means of the following list:

CoG News : cog-news@globus.org

10

majordomo@globus.org
http://www.globus.org/cog/contact/
http://www.globus.org/about/subscriptions.html
cog-news@globus.org

Sorted by Thread: : http://www-unix.globus.org/mail_archive/cog-news/threads.html

Sorted by Date : http://www-unix.globus.org/mail_archive/cog-news/maillist.html

Discussions and Community Developers

Discussions and general questions can be send to the high-volume e-mail list at

Java List : java@globus.org

Sorted by Thread : http://www-unix.globus.org/mail_archive/java/threads.html

Sorted by Date: : http://www-unix.globus.org/mail_archive/java/maillist.html

Note that this list may result in daily mails sent by the Java CoG Kit community.
Please use the bug tracking system for reporting bugs. If you use the bug track-
ing system, your message has a higher chance of being answered. There is no
guarantee that we answer a mail sent to the Java CoG Kit mailing lists.

1.4.4 Sourcecode Repository

We maintain all source code in a CVS repository that can be accessed anony-
mously. You can find more details about this in Section??.

1.5 About the Manual

This manual is constantly being improved and your input is highly appreciated.
Please report suggestion, errors, changes, and new sections or chapters through
our bugzilla system.

When you report bugs, please do not use page, line, or section numbers. Remember
new sections may appear due to community contributions. Instead, please quote
the section title, or make corrections by hand and FAX it to us. Even better, submit
a corrected document, as you can check out the manual through our CVS archive.

1.5.1 Conventions

If you see a?? or a ... in the text there is no reason to send us a report on it.
It simply means that the section to which we refer has not yet been integrated in
this manual. Comments that indicate issues that needs to be don, are included as
footnotes. New text that has not yet been reviewed, may be in a different color.
Regular text is written using the Times font. Code examples are highlighted in
shaded blocks.

i n t a ;
a = 1 + 2 ;

Interactive commands issued by a user in a shell are preceded with a> at the
beginning of the line.

> l s

In case interactive commands exceed the 79 character limit, they are wrapped into
the next line and are not proceeded by the> character. A backslash is included at
the end of such lines to explicitly indicate that the command ins continued on the
next line.

11

http://www-unix.globus.org/mail_archive/cog-news/threads.html
http://www-unix.globus.org/mail_archive/cog-news/maillist.html
java@globus.org
http://www-unix.globus.org/mail_archive/java/threads.html
http://www-unix.globus.org/mail_archive/java/maillist.html

> echo ” Th is i s s very long t e x t t h a t i s c o n t i n u e d on t h e \
nex t l i n e s . The l e a d i n g b l a n k s i n t h e nex t l i n e s \
a r e t o be i g n o r e d”

> echo ” Th is i s a new command”

References to variables or other important text that is part of a program or shell
script is written inCourier . To illustrate this on an example:

Hence, a reference to the variableint a form our previous example
uses also theCourier font.

Generic entities are wrapped between angle brackets. Each such entity is not to be
taken literally. In general, such constructs are explained as they occur throughout
the manual. The use of such entities is shown in the example below:

<machine−name>

Here,<machine-name> is to be replaced with an actual machine name:

> p ing ho t . mcs . a n l . gov

Web links are proceeded by a meaningful name for the link. An example is

Java CoG Kit Website : http://www.globus.org/cog

Links to code source are proceeded by the repository tag. An example is

jglobus : org/globus/gram/Gram.java

1.6 Manual Maintainer

A number of people are currently maintaining the manual.

Part Section Name
Preface 1 Gregor von Laszewski
Introduction Gregor von Laszewski
Licence Gregor von Laszewski
Installation 4 Mike Hategan
Setup 4.8 Mike Hategan
Contributing 5 Mike Hategan
Modules

jglobus TBD
Util TBD
Certrequest TBD
Resources TBD
Common TBD
Grapheditor 9 Mike Hategan
Karajan 8 Mike Hategan
Core 7 Kaizar Amin
Portlet 10 Mike Hategan
QoS 11 Rashid Al-Ali

Command Tools
Certrequest 13 Gregor von Laszewski

We invite you to contribute to the manual or the code (see1.1).

12

http://www.globus.org/cog
http://www.globus.org/cog/current/jglobus/src/org/globus/gram/Gram.java

1.7 Contributors

Gregor von Laszewski, Argonne National Laboratory, University of Chicago
Kaizar Amin, University of North Texas, ANL
Mike Hategan, University of Chicago, ANL
Shashank Shankar, Illinois Institute of Technology, ANL
Vladimir Silva, IBM
Jean-Claude Cote, High Performance Computing, National Research Council, Canada

If we have forgotten to include your name in the list of contributors please notify
us.

1.8 Administrative Contact

The project is managed by Gregor von Laszewski. To contact him, please use the
information below.

Gregor von Laszewski
Argonne National Laboratory
Mathematics and Computer Science Division
9700 South Cass Avenue
Argonne, IL 60439
Phone:(630) 252 0472
Fax: (630) 252 1997
gregor@mcs.anl.gov

1.9 Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Science Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract W-31-109-
Eng-38. DARPA, DOE, and NSF support Globus Project research and develop-
ment. This work would not have been possible without the help of Ian Foster and
the Globus Project team.

13

gregor@mcs.anl.gov

2 License

The Java CoG Kit is distributed under two licenses. The parts that are included
in the Globus Toolkit are distributed under the Globus Toolkit Public License
(GTPL), which is listed in Section2.2.1. The parts that are not distributed in the
Globus Toolkit, are distributed undert the Java CoG Kit Public License. At this
tiem the Java CoG Kit License (Section2.3) is a simple copy of the Globus Toolkit
License with the Globus Toolkit refernces being replaced by apropiate Java CoG
Kit refernces and the institution, just being University of Chicago.

To collaborate with us it is best for now to just sign the Globus Toolkit contributor
License and fax it to Gregor von Laszewski at 630 252 1997.

2.1 Project Registration

We wish that you to notify us about projects that you develop with the help of the
Java CoG Kit. This will allow us to keep track of the use of the Java CoG Kit, as
this directly affects our ability to motivate additional coding activities. Please, be
so kind to send an e-mail togregor@mcs.anl.gov with the subject

JAVA COG KIT USGAE

with the following additional information provided by you:

Project name:
Institution:
Main contact:
E-mail:
Web page:
Description of your project:
References:
References citing the Java CoG Kit:

In case you like to cite the Java CoG Kit in your papers, we recommend that you
use the following paper:

Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane,
A Java Commodity Grid Kit ,
Concurrency and Computation: Practice and Experience,
Pages 643-662, Volume 13, Issue 8-9, 2001.
http://www.globus.org/cog/java/

We also would like to be notified about your publications that involve the use of
the Java CoG Kit, as this will help us to document its usefulness. We like to feature
links to these articles, with your permission, on our Web site.

Additional references to Java CoG Kit and other Grid related activities can be
found at

14

gregor@mcs.anl.gov

Some Refernces, von Laszewski :http://www.mcs.anl.gov/˜gregor/bib

or

Some References, Globus Project :http://www.globus.org/research/papers.html

.

15

http://www.mcs.anl.gov/~gregor/bib
http://www.globus.org/research/papers.html

2.2 Globus Toolkit

2.2.1 Globus Toolkit Public License (GTPL)

Globus Toolkit Public License (GTPL) Version 2

Globus Toolkit Public License Version 2, July 31, 2003

Copyright 1999-2003 University of Chicago and The University of Southern California. All rights
reserved.

This software referred to as the Globus Toolkit software (“Software”) includes voluntary contributions
made to the Globus Project collaboration. Persons and entities that have made voluntary contributions
are hereinafter referred to as “Contributors.” This Globus Toolkit Public License is referred to herein
as “the GTPL.” For more information on the Globus Project, please see http://www.globus.org/.

Permission is granted for the installation, use, reproduction, modification, display, performance and
redistribution of this Software, with or without modification, in source and binary forms. Permission
is granted for the installation, use, reproduction, modification, display, performance and redistribution
of user files, manuals, and training and demonstration slides (“Documentation”) distributed with or
specifically designated as distributed under the GTPL. Any exercise of rights under the GTPL is subject
to the following conditions:

1. Redistributions of this Software, with or without modification, must reproduce the GTPL in:
(1) the Software, or (2) the Documentation or some other similar material which is provided
with the Software (if any).

2. The Documentation, alone or if included with a redistribution of the Software, must include the
following notice: “This product includes material developed by the Globus Project
(http://www.globus.org/).”

3. Alternatively, if that is where third-party acknowledgments normally appear, this acknowledg-
ment must be reproduced in the Software itself.

4. Globus Toolkit and Globus Project are trademarks of the University of Chicago. Any trade-
marks of the University of Chicago or the University of Southern California may not be used
to endorse or promote software, or products derived therefrom, and except as expressly pro-
vided herein may not be affixed to modified redistributions of this Software or Documentation
except with prior written approval, obtainable at the discretion of the trademark owner from
info@globus.org.

5. To the extent that patent claims licensable by the University of Southern California and/or by
the University of Chicago (as Operator of Argonne National Laboratory) are necessarily in-
fringed by the use or sale of the Software, you and your transferees are granted a non-exclusive,
worldwide, royalty-free license under such patent claims, with the rights to make, use, sell, of-
fer to sell, import and otherwise transfer the Software in source code and object code form. This
patent license shall not apply to Documentation or to any other software combinations which
include the Software. No hardware per se is licensed hereunder.

If you or any subsequent transferee (a “Recipient”) institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Software infringes such
Recipient’s patent(s), then such Recipient’s rights granted under the patent license above shall
terminate as of the date such litigation is filed.

6. DISCLAIMER

SOFTWARE AND DOCUMENTATION ARE PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR
USE ARE DISCLAIMED. THE COPYRIGHT HOLDERS AND CONTRIBUTORS MAKE
NO REPRESENTATION THAT THE SOFTWARE, DOCUMENTATION, MODIFICATIONS,
ENHANCEMENTS OR DERIVATIVE WORKS THEREOF, WILL NOT INFRINGE ANY
PATENT, COPYRIGHT, TRADEMARK, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

7. LIMITATION OF LIABILITY

THE COPYRIGHT HOLDERS AND CONTRIBUTORS SHALL HAVE NO LIABILITY TO
LICENSEE OR OTHER PERSONS FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER
INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR

16

SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOW-
EVER CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUD-
ING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE OR DOCUMENTATION, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8. The Globus Project may publish revised and/or new versions of the GTPL from time to time.
Each version will be given a distinguishing version number. Once Software or Documentation
has been published under a particular version of the GTPL, you may always continue to use it
under the terms of that version. You may also choose to use such Software or Documentation
under the terms of any subsequent version of the GTPL published by the Globus Project. No
one other than the Globus Project has the right to modify the terms of the GTPL.

Globus Toolkit Public License 7-31-03

17

2.2.2 Globus Toolkit Contributor Liceense

Grant of Licenses in Globus Toolkit Contributions, July, 2003

The undersigned licensor (“LICENSOR”) has delivered or caused or permitted to be delivered to The
University of Chicago, as Operator of Argonne National Laboratory, and The University of South-
ern California (collectively “LICENSEE”) software and documentation (collectively, “CONTRIBU-
TIONS”) created by LICENSOR or by LICENSOR’s employees, associates, contractors, or collabo-
rators. Software (“SOFTWARE”) contributed by LICENSOR are source and binary software code,
such as schema, bug fixes, patches, upgrades or other modifications or enhancements of the features,
functionality or performance of the Globus Toolkit software (“GLOBUS TOOLKIT”). Documentation
(“DOCUMENTATION”) contributed by LICENSOR are print and digital media that describe and ex-
plain, such as readme files, white papers, overviews, and tutorials, and are useful with the GLOBUS
TOOLKIT.

Acknowledging receipt of LICENSEE’s services in distributing the GLOBUS TOOLKIT to a com-
munity of end users and developers, including LICENSOR, and LICENSEE’s intention to continue
such distribution, LICENSOR hereby grants to LICENSEE the following licenses (collectively, with
all limitations included herein, referred to as this “Grant”):

a) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license to install, use, re-
produce, modify, display, perform, and prepare derivative works of SOFTWARE; to incorporate SOFT-
WARE in whole or in part and derivative works thereof into the GLOBUS TOOLKIT or into any other
computer software; and to sublicense copyrights in and distribute SOFTWARE and derivative works
thereof, in source and binary forms.

b) subject to termination provisions below and to the extent that patent claims licensable by LICENSOR
are necessarily infringed by the use or sale of SOFTWARE alone or when combined with the GLOBUS
TOOLKIT, a non-exclusive, worldwide, royalty-free license and right to sublicense under such patent
claims, with the rights for LICENSEE and its sublicensees to make, use, sell, offer to sell, import and
otherwise transfer the SOFTWARE in source code and object code form, alone and incorporated into
the GLOBUS TOOLKIT and derivative works. This patent license shall apply to the combination of the
SOFTWARE and the GLOBUS TOOLKIT if, at the time SOFTWARE is added by the LICENSEE or
its transferees, such addition of the SOFTWARE causes such combination to be covered by such patent
claims. The patent license shall not apply to any other combinations which include the SOFTWARE.
No hardware per se is licensed hereunder.

c) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license: to install, use,
reproduce, modify, display, perform, and prepare derivative works of DOCUMENTATION; to incorpo-
rate DOCUMENTATION in whole or in part and derivative works thereof into any other documentation;
and to sublicense copyrights in and distribute DOCUMENTATION and derivative works thereof.

If LICENSEE or any subsequent transferee (each referred to as a “RECIPIENT”) institutes patent
litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
SOFTWARE or the GLOBUS TOOLKIT distributed pursuant to this Grant or the Globus ToolkitPublic
License infringe such RECIPIENT’s patent(s), then such RECIPIENT’s rights granted under the patent
license in paragraph b) above shall terminate as of the date such litigation is filed.

The foregoing licenses shall be effective so long as the terms under which LICENSEE sublicenses
copyrights in and distributes the CONTRIBUTIONS effectively: (a) include compatible patent license
termination language as that set forth above, and (b) disclaim liability on behalf of LICENSOR for
all damages, including direct, indirect, special, incidental, exemplary and punitive damages, in sub-
stantially the same form as that included herein; and shall apply to any and all CONTRIBUTIONS
specifically designated, now or in the future, as within the scope of this Grant by LICENSOR’s autho-
rized representative.

LICENSOR represents that to its knowledge it has or has obtained any and all required permissions and
authority to make this Grant. Except as provided in the preceding sentence, LICENSOR PROVIDES
THE CONTRIBUTIONS ON AN “AS IS” BASIS AND MAKES NO REPRESENTATIONS AND
EXTENDS NO WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, CONCERN-
ING THE CONTRIBUTIONS. LICENSOR MAKES NO EXPRESS OR IMPLIED WARRANTIES
OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR
PURPOSE OR USE. LICENSOR MAKES NO REPRESENTATION THAT THE CONTRIBUTIONS
WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY
RIGHT. LICENSOR SHALL HAVE NO LIABILITY WITH RESPECT TO ITS OBLIGATION UN-
DER THIS GRANT OR OTHERWISE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

18

LICENSEE shall not be required to include the name of LICENSOR or any of its employees, asso-
ciates, contractors or collaborators in any copyright registration, notice or license associated with the
CONTRIBUTIONS. LICENSOR hereby grants LICENSEE permission to post this Grant on a website
associated with the GLOBUS TOOLKIT, provided that LICENSOR is given the opportunity to review
and approve in advance any such posting; such approval not to be unreasonably withheld or delayed.

Except as expressly provided herein, nothing in this Grant shall be construed as granting any right or
license under any inventions, patents, copyrights, trade secrets, or any other intellectual property rights
of LICENSOR.

LICENSOR: _____________________________________

By: _____________________________________

Title: _____________________________________

Date: _____________________________________

Address:

Globus Toolkit Contributor License 7-31-03

19

2.3 Java CoG Kit

Note that the Java CoG Kit License is just a draft and is in principle very similar
to the Globus Toolkit License.

At present, we recommend to work with us under the Globus Toolkit Public Li-
cense and the Globus Toolkit Contributor License.

2.3.1 Java CoG Kit Public License (JCoGPL)

Java CoG Kit Public License (JCoGPL) Draft Version

Java CoG Kit Public License Draft, February 29, 2004

Copyright 1999-2003 University of Chicago. All rights reserved.

This software referred to as the Java CoG Kit software (“Software”) includes voluntary contributions
made to the Globus Project collaboration. Persons and entities that have made voluntary contributions
are hereinafter referred to as “Contributors.” This Java CoG Kit Public License is referred to herein as
“the JCoGPL.” For more information on the Java CoG Kit, please see http://www.cogkits.org/.

Permission is granted for the installation, use, reproduction, modification, display, performance and
redistribution of this Software, with or without modification, in source and binary forms. Permission
is granted for the installation, use, reproduction, modification, display, performance and redistribution
of user files, manuals, and training and demonstration slides (“Documentation”) distributed with or
specifically designated as distributed under the JCoGKit. Any exercise of rights under the JCoGKit is
subject to the following conditions:

1. Redistributions of this Software, with or without modification, must reproduce the JCoGPL in:
(1) the Software, or (2) the Documentation or some other similar material which is provided
with the Software (if any).

2. The Documentation, alone or if included with a redistribution of the Software, must include the
following notice: “This product includes material developed by the Globus Project
(http://www.globus.org/) and the Java CoG Kit (http://www.cogkits.org).”

3. Alternatively, if that is where third-party acknowledgments normally appear, this acknowledg-
ment must be reproduced in the Software itself.

4. Globus Toolkit Java CoG Kit and Globus Project are trademarks of the University of Chicago.
Any trademarks of the University of Chicago may not be used to endorse or promote software,
or products derived therefrom, and except as expressly provided herein may not be affixed to
modified redistributions of this Software or Documentation except with prior written approval,
obtainable at the discretion of the trademark owner from info@globus.org.

5. To the extent that patent claims licensable by the University of Chicago (as Operator of Argonne
National Laboratory) are necessarily infringed by the use or sale of the Software, you and
your transferees are granted a non-exclusive, worldwide, royalty-free license under such patent
claims, with the rights to make, use, sell, offer to sell, import and otherwise transfer the Software
in source code and object code form. This patent license shall not apply to Documentation or
to any other software combinations which include the Software. No hardware per se is licensed
hereunder.

If you or any subsequent transferee (a “Recipient”) institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Software infringes such
Recipient’s patent(s), then such Recipient’s rights granted under the patent license above shall
terminate as of the date such litigation is filed.

6. DISCLAIMER

SOFTWARE AND DOCUMENTATION ARE PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR
USE ARE DISCLAIMED. THE COPYRIGHT HOLDERS AND CONTRIBUTORS MAKE
NO REPRESENTATION THAT THE SOFTWARE, DOCUMENTATION, MODIFICATIONS,
ENHANCEMENTS OR DERIVATIVE WORKS THEREOF, WILL NOT INFRINGE ANY
PATENT, COPYRIGHT, TRADEMARK, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

20

7. LIMITATION OF LIABILITY

THE COPYRIGHT HOLDERS AND CONTRIBUTORS SHALL HAVE NO LIABILITY TO
LICENSEE OR OTHER PERSONS FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER
INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOW-
EVER CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUD-
ING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE OR DOCUMENTATION, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8. The Java CoG Kit Project may publish revised and/or new versions of the JCoGPL from time to
time. Each version will be given a distinguishing version number. Once Software or Documen-
tation has been published under a particular version of the JCoGPL, you may always continue
to use it under the terms of that version. You may also choose to use such Software or Doc-
umentation under the terms of any subsequent version of the JCoGPL published by the Java
CoG Project. No one other than the Java CoG Project has the right to modify the terms of the
JCoGPL.

Java CoG Kit Public License Draft, 29-Feb-04

21

2.3.2 Java CoG Kit Contributor Liceense

Grant of Licenses in Java CoG Kit Contributions, July, 2003

The undersigned licensor (“LICENSOR”) has delivered or caused or permitted to be delivered to The
University of Chicago, as Operator of Argonne National Laboratory (collectively “LICENSEE”) soft-
ware and documentation (collectively, “CONTRIBUTIONS”) created by LICENSOR or by LICEN-
SOR’s employees, associates, contractors, or collaborators. Software (“SOFTWARE”) contributed by
LICENSOR are source and binary software code, such as schema, bug fixes, patches, upgrades or other
modifications or enhancements of the features, functionality or performance of the Java CoG Kit soft-
ware (“JAVA COG KIT”). Documentation (“DOCUMENTATION”) contributed by LICENSOR are
print and digital media that describe and explain, such as readme files, white papers, overviews, and
tutorials, and are useful with the JAVA COG KIT.

Acknowledging receipt of LICENSEE’s services in distributing the JAVA COG KIT a community of
end users and developers, including LICENSOR, and LICENSEE’s intention to continue such distribu-
tion, LICENSOR hereby grants to LICENSEE the following licenses (collectively, with all limitations
included herein, referred to as this “Grant”):

a) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license to install, use, re-
produce, modify, display, perform, and prepare derivative works of SOFTWARE; to incorporate SOFT-
WARE in whole or in part and derivative works thereof into the JAVA COG KIT or into any other
computer software; and to sublicense copyrights in and distribute SOFTWARE and derivative works
thereof, in source and binary forms.

b) subject to termination provisions below and to the extent that patent claims licensable by LICENSOR
are necessarily infringed by the use or sale of SOFTWARE alone or when combined with the JAVA
COG KIT, a non-exclusive, worldwide, royalty-free license and right to sublicense under such patent
claims, with the rights for LICENSEE and its sublicensees to make, use, sell, offer to sell, import and
otherwise transfer the SOFTWARE in source code and object code form, alone and incorporated into
the JAVA COG KIT and derivative works. This patent license shall apply to the combination of the
SOFTWARE and the JAVA COG KIT if, at the time SOFTWARE is added by the LICENSEE or its
transferees, such addition of the SOFTWARE causes such combination to be covered by such patent
claims. The patent license shall not apply to any other combinations which include the SOFTWARE.
No hardware per se is licensed hereunder.

c) a non-exclusive, worldwide, royalty-free, perpetual, transferable copyright license: to install, use,
reproduce, modify, display, perform, and prepare derivative works of DOCUMENTATION; to incorpo-
rate DOCUMENTATION in whole or in part and derivative works thereof into any other documentation;
and to sublicense copyrights in and distribute DOCUMENTATION and derivative works thereof.

If LICENSEE or any subsequent transferee (each referred to as a “RECIPIENT”) institutes patent
litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
SOFTWARE or the JAVA COG KIT distributed pursuant to this Grant or the Java CoG KitPublic
License infringe such RECIPIENT’s patent(s), then such RECIPIENT’s rights granted under the patent
license in paragraph b) above shall terminate as of the date such litigation is filed.

The foregoing licenses shall be effective so long as the terms under which LICENSEE sublicenses
copyrights in and distributes the CONTRIBUTIONS effectively: (a) include compatible patent license
termination language as that set forth above, and (b) disclaim liability on behalf of LICENSOR for
all damages, including direct, indirect, special, incidental, exemplary and punitive damages, in sub-
stantially the same form as that included herein; and shall apply to any and all CONTRIBUTIONS
specifically designated, now or in the future, as within the scope of this Grant by LICENSOR’s autho-
rized representative.

LICENSOR represents that to its knowledge it has or has obtained any and all required permissions and
authority to make this Grant. Except as provided in the preceding sentence, LICENSOR PROVIDES
THE CONTRIBUTIONS ON AN “AS IS” BASIS AND MAKES NO REPRESENTATIONS AND
EXTENDS NO WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, CONCERN-
ING THE CONTRIBUTIONS. LICENSOR MAKES NO EXPRESS OR IMPLIED WARRANTIES
OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR
PURPOSE OR USE. LICENSOR MAKES NO REPRESENTATION THAT THE CONTRIBUTIONS
WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY
RIGHT. LICENSOR SHALL HAVE NO LIABILITY WITH RESPECT TO ITS OBLIGATION UN-
DER THIS GRANT OR OTHERWISE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

22

LICENSEE shall not be required to include the name of LICENSOR or any of its employees, asso-
ciates, contractors or collaborators in any copyright registration, notice or license associated with the
CONTRIBUTIONS. LICENSOR hereby grants LICENSEE permission to post this Grant on a website
associated with the JAVA COG KIT, provided that LICENSOR is given the opportunity to review and
approve in advance any such posting; such approval not to be unreasonably withheld or delayed.

Except as expressly provided herein, nothing in this Grant shall be construed as granting any right or
license under any inventions, patents, copyrights, trade secrets, or any other intellectual property rights
of LICENSOR.

LICENSOR: _____________________________________

By: _____________________________________

Title: _____________________________________

Date: _____________________________________

Address:

Java CoG Kit Contributor License Draft

23

2.4 Other Licences

We distribute a number of other libraries with the Java CoG Kit. These libraries
come with their own licences. We strongly encourage you to inspect these licenses.
The can be found in the “lib” directories of the Java CoG Kit.

2.4.1 jglobus

The jglobus/lib directory contains the following licences.

jglobus : bouncycastle.LICENSE

jglobus : cryptix.LICENSE

jglobus : log4j.LICENSE

jglobus : junit.LICENSE

jglobus : puretls.LICENSE

2.4.2 ogce

The ogce/lib directory contains the following licences:

ogce : soaprmi11.LICENSE

ogce : xerces.LICENSE

ogce : xml4j.LICENSE

2.4.3 Others

1

2.5 GNU Public Licence

Although we prefer the development of code that is non GPL, we do have the
ability to distribute components under the GNU license or are dependent on code
developed with the GNU License. For thie purpose we created a seperate CVS
archive in which we maintain the GPL-based code.

We will not distribute any GPL based Java CoG Kit code in binary format. It must
be downloaded, compiled, and installed seperatly.

We will include more details to this issue in future. One of the Java CoG Kit Codes
that will be included is the availability of a GPL based Grid shell.

At this time, we have not yet made this code available as part of the Java CoG Kit.

1 Other licenses need to be adde here

24

http://www.globus.org/cog/current/jglobus/lib/bouncycastle.LICENSE
http://www.globus.org/cog/current/jglobus/lib/cryptix.LICENSE
http://www.globus.org/cog/current/jglobus/lib/log4j.LICENSE
http://www.globus.org/cog/current/jglobus/lib/junit.LICENSE
http://www.globus.org/cog/current/jglobus/lib/puretls.LICENSE
http://www.globus.org/cog/current/ogce/lib/soaprmi11.LICENSE
http://www.globus.org/cog/current/ogce/lib/xerces.LICENSE
http://www.globus.org/cog/current/ogce/lib/xml4j.LICENSE

3 Introduction

3.1 Overview

3.2 History

3.2.1 Metacomputing

3.2.2 CoG Kits

directions

developed OO

developed API based version - no success too dificult to use

Globus

API - protocol - services

Web services without modification

Inforgram first futire service

25

4 Installation

4.1 Download

4.2 CVS Release Tags

cvs co -r v2-0-a cog Sat Nov 15

Branch

v2-1

4.2.1 Prerequisites

In order to use the Java CoG Kit, the Java Runtime Environment version 1.4, avail-
able from the Java Web-Site is required. Additionally, if you plan to compile the
Java CoG Kit from sources, you will need the full Java Development Kit, version
1.4, available from the same web-site, and a recent version of the Apache Ant build
system.

At this time we recommend to use the following packages, as we have not yet
tested Java CoG with any other Java version.

1. ant-1.5.4:The Java CoG Kit requires Apache Ant which can be downloaded
form http://ant.apache.org .

2. JDK 1.4.202-b03 or above

Please note that earlier versions of the Java Development Kit contain expired root
certificates, which means that you will only be able to use public key cryptography
in a limited fashion.

4.3 Downloading the Java CoG Kit

Before using the Java CoG Kit, you will need to download it. At this moment, the
Java CoG Kit is only available in source format and from the source repository.
To download the sources from the source repository you will need to have a CVS
client installed. Instructions will be provided for the command-line CVS clients
(available on most UNIX and Linux machines and CYGWIN):

1. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS login

2. password: Hit Enter

3. cvs -d:pserver:anonymous@cvs.globus.org:/home/dsl/cog/CVS checkout cog

4. cd cog

5. ant dist

26

http://ant.apache.org

4.4 Compiling the Java CoG Kit

In compiling the Java CoG Kit, you have two options:

1. Compiling the whole Java CoG Kit. This option may suit you if you plan to
use the whole functionality of the Java CoG Kit, or if you wan to test all the
features of the Java CoG Kit.

2. Compiling individual modules. This option will only compile the neces-
sary parts needed in order to provide the particular functionality packed in a
module.

4.5 Compiling the complete distribution

In the main cog directory, type: $ ant dist

A new directory named dist will be created in the cog directory. Inside the dist
directory you will find a cog-<version> directory which contains libraries (lib),
configuration files (etc), example files (examples) and application launchers (bin).

4.6 Compiling individual modules

The main cog directory contains a subdirectory named modules, which in turn con-
tains all the modules that compose the Java CoG Kit. You can change directory to
any of these modules and type the following in order to obtain a binary distribution
directory for that module:

$ ant dist

A dist/<modulename>-<moduleversion> directory will be created containing the
distribution files. Any modules that the compiled module depends on will also be
compiled and included inside the same directory.

4.7 Using the Java CoG Kit

The following is the basic layout for the binary distribution directories, whether
obtained by downloading the precompiled packages or by compiling the sources:

bin/ etc/ lib/

The bin directory contains launchers that can be used to start a particular appli-
cation in the Java CoG Kit. The etc directory contains configuration files needed
by various parts of the Java CoG Kit. The lib directory contains the jar files that
belong to the Java CoG Kit, together with the libraries required to run various parts
of the Java CoG Kit.

To start a particular CoG application go to the bin directory and choose its re-
spective launcher.IMPORTANT! The Java CoG Kit now automatically detects the
COG INSTALL PATH. If you have the variable set to a specific directory point-
ing to an older version of the Java CoG Kit, it may result in unexpected behavior.
Please unset the COGINSTALL PATH variable before running any of the appli-
cations, or set it to either

cog/dist/cog-<version>

or to

27

cog/modules/<modulename>/dist/<modulename>-<moduleversion>

4.8 Setup

28

5 Contributing

5.1 Creating a module

It is easy to contribute to the Java CoG Kit through its newly designed module
concept. A Sample module build file can be found in modules/template. There are
a few requirements that have to be imposed in order to keep consistency:

The basic directory structure thatmust exists for each module is:

etc/MANIFEST.MF.head
etc/MANIFEST.MF.tail
lib/
src/

5.1.1 Build files

The build files for each module has 4 parts:

build.xml : should not be modified at all unless absolutely neccessary. If there is a fea-
ture that you would like added to the build system, please tell Mike (hate-
gan@mcs.anl.gov)

dependencies.xml : project dependencies are stored here. Please modify it to suit your needs.
An example is given in the modules/template directory

launchers.xml : launchers that you want created in the build process. Use the example in
modules/template to see how to use it

project.properties : The module properties. The module name *must* be the same as the di-
rectory name of the module. The last line in this file contains the library
dependencies for this module. If you don’t add the jar files that your project
requires there, it will not build. The format is a comma separated list of files.
I suggest using<jar-name>.* (so that licenses and other things belonging
to a jar will also be copied). Please read below about the libraries.

5.1.2 Libraries

Libraries can be found in two places:

1. cog/lib

2. cog/modules/yourmodule/lib

The build system will automatically choose the library from either of the two di-
rectories. If a library exists in both directories, priority will be given to the library
in thecog/lib directory. This may cause your module not to build. Please talk
to Gregor or Mike in this case. Also please note that the libraries in your module
may at any time move to thecog/lib directory.

29

5.1.3 Source

The sources for your module. Not much to say here :)

5.1.4 Using PMD

We recommend that that developers and contributors use PMD (http://pmd.
sourceforge.net) to check their code. Many of the complaints that PMD
generates should be taken seriously. Still, there are instances when PMD rules do
not apply for a good reason and create false positives.

To use pmd, you need to donwload it and add all its jar files to the pmd directory.
Afterwards, just run ’ant pmd’ in the module you want to check. It will generate
both an on-screen report and an html report (pmd-report.html)

5.1.5 Documenting the modules

README TODO CHANGES PMD

5.1.6 Maintaining a module

5.1.7 Launchers

5.1.8 Webstart

5.2 Coding Guidelines for the Java CoG Kit

The Java CoG Kit follows in general the basic coding conventions given in the “Sun
Coding Conventions for the Java Programming Language” (http://java.sun.
com/docs/codeconv/html/CodeConvTOC.doc.html). Additionally we
have the following rules.

5.2.1 Imports

All imports must be single class and explicit. I.e. import<package>.* is not
allowed.

5.2.2 Indentation

All indentation levels should be 4 spaces. No editor tabs are allowed unless they
are converted to 4 spaces before saving the file.

5.2.3 Brackets

In contrast to the OGSA coding guides, we only allow the use of brackets as defined
in the Java Coding guidelines. E.g.

f o r (i ndex = 0 ; index < l e n g t h ; i ndex ++){
<code>

}

5.2.4 Variables

No acronyms or abbreviations should be used. E.g. a = b + mVarLen should be
avoided and instead use: totalLength = partLength + newLength

30

http://pmd.sourceforge.net
http://pmd.sourceforge.net
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

5.2.5 Instance Variables

Use “this.” prefix when referencing instance variables, e.g.:

p u b l i c MyClass (S e r v i c e P r o p e r t i e s I n t e r f a c e p r o p e r t i e s){
t h i s . p r o p e r t i e s = p r o p e r t i e s ;

}

p u b l i c i n t foo () {
i n t l o c a l I n t = 3 ;
r e t u r n t h i s . i n s t a n c e I n t + l o c a l I n t ;

}

5.3 One-Liners

Even single line statements should be inside brackets. E.g.

i f (isEmpty) {
r e t u r n;

}

5.3.1 Logging

Log4J should be used exclusively. System.out/err.println is not allowed. Further,
exceptions should be logged.

5.3.2 Testing

Each component/class should have a JUnit test The tests should be put in test/
directory under each package directory.

5.3.3 Internationalization

The core framework should be fully internatioanlized. The samples may be inter-
nationalized. The Java I18n/L10n Toolkit may be used to verify whether code is
international.

5.3.4 Library Reuse

Treat all code as a library, and as a reusable component. Calls to System.exit() are
disallowed (except the main method)

5.3.5 Exceptions

Use chained exceptions. Java CoG Kit provides two simple generic exception
classes for chaining multiple exceptions together. Look at ChainedException and
ChainedIOException.

31

6 Modules

6.1 util

6.2 certrequest

32

7 Core

7.1 Introduction

The Java Cog Kit 2.0 core1 (cog-core) is an add on to the cog-jglobus library.
It includes many advanced features to make Grid programming easier. The core
module provides an abstraction layer for various low level Grid implementations
such as Globus Toolkit v2 and v3. A Grid application developer can port Grid
applications from one implementation (GT2) to another (GT3) by simply changing
the underlying implementation provider. Thus, all applications developed using
the cog-core APIs are compatible with all the underlying Grid implementations
supported by cog-core. The current version of the core module provides support
for GT2, GT3, and SSH implementations. Other platforms will be supported based
on availability of resources.

Further cog-core also provides several constructs whereby simple execution de-
pendencies (workflows) can be expressed as a directed acyclic graph (DAG) or
hierarchical DAG where each Grid task can interface with a different Grid imple-
mentation. For more sophisticated workflow functionality the reader is directed to
the Java CoG Kit Karajan module in Chapter8

Hence, cog-core offers the following benefits:

• develop client applications that will be inter-operable across multiple Grid
backend implementations;

• provide re-usable code to support rapid prototyping of basic Grid access
patterns;

• provide an open-source and extensible architecture that can be built collec-
tively and incrementally based on community feedback; and

• access the same set of interfaces implemented in disparate technologies.

7.2 Installation

7.2.1 Download

The Java CoG Kit 2.0 core module can be downloaded from the Java CoG Kit
CVS archive. Instructions regarding the Java CoG Kit requirements and details on
obtaining the Java CoG Kit sources, are available in Section4.

It must be noted that cog-core is explicitly a client-side library. Current version of
cog-core provides support for GT2, GT3, and SSH. Hence, in order to execute tasks
against these implementations, the reader is directed to install GT2.4, GT3.0.3,
and SSH server. For further details on installing the Globus Toolkit please visit the
Globus Alliance webpagehttp://www.globus.org

1 Formerly known as the GridSDK module

33

http://www.globus.org

7.2.2 Compile

To compile the core module, change directory tocog/modules/core and type ’ant
dist’. This will compile cog-core and all its dependencies. It will also create
a dist directory containing the distribution of the core module. Inside thedist
directory, thebin directory will contain the necessary scripts that can be used to
launch several commandline clients and example applications.

7.2.3 Configuration

Cog-core can be configured via the cog-core.properties file in the /.globus direc-
tory. The user can set the following properties in this configuration file:

#provider class
GT2 = org.globus.cog.core.impl.gt2
GT3 = org.globus.cog.core.impl.gt3
SSH = org.globus.cog.core.impl.ssh
SCHEMA_LOCATION = <COG_HOME>/modules/core/schema

GT2, GT3, and SSH are default providers. SCHEMALOCATION indicates the
directory location of the schemas required by GT3. and<COG_HOME>points to
the location where the CoG is installed.

Hence, an example cog-core.properties file would be similar to:

#Java CoG Kit Core module
GT2 = org.globus.cog.core.impl.gt2
GT3 = org.globus.cog.core.impl.gt3
SSH = org.globus.cog.core.impl.ssh
SCHEMA_LOCATION = /home/user-name/cog/core/modules/core/schema

7.2.4 Examples

Several examples that demonstrate the ease of use and functionality of the Java
CoG Kit Core are provided. These examples are available in the../modules/
core/src/org/globus/cog/core/examples directory.

The examples are further divided into the following packages:

gt2 : showcasing the gt2 functionality.

1. The GT2 JobSubmission example demonstrates the ability to submit to
a PBS batch queue.

2. The GT2 FileTransfer example demonstrates the ability to perform a
third party file transfer using Grid FTP.

gt3 : showcasing the gt3 functionality.

1. The GT3 JobSubmission example demonstrates the ability to submit to
a MasterForkManagedJobFactory service. It can also be used for PBS
managed factory services.

2. The GT3 FileTransfer includes examples for third party transfers for
single as well as multiple files. It uses the MultiRFT Grid service.

ssh : showcasing the ssh functionality.

34

../modules/core/src/org/globus/cog/core/examples
../modules/core/src/org/globus/cog/core/examples

Figure 7.1: Core UML Class Diagram

1. The SSH JobSubmission and FileTransfer examples demonstrate the
ability to use SSH and SSH credentials to perform the corresponding
tasks.

misc : demonstrating the combination of the gt2, gt3, and ssh platforms with exe-
cution dependencies. The examples in misc package show how to create a
directed acyclic graph (DAG) and visualize it using the grapheditor module.
It also shows how to create a hierarchical DAG and visualize it.

After successfully compiling the core module, these examples can be executed
from the launcher scripts available in../modules/core/dist/bin direc-
tory.

7.3 Design

One of the most important usage patterns in Grid computing is the execution of
a Grid task. An extension to this basic Grid execution pattern is a Grid workflow
pattern that enable the user to submit a set of Grid tasks along with an execution
dependency. Therefore, the initial design of cog-core concentrates on providing
the artifacts required to support these important usage patterns. Other Grid patterns
can be supported by extending the flexible cog-core design based on community
feedback.

Figure7.1shows the class diagram of cog-core. A detailed listing of the attributes
and functions for each class has been omitted for simplicity. In the rest of this
section we describe the important entities designed and their semantics as a part of
the offered functionality.

35

../modules/core/dist/bin

7.3.1 ExecutableObject

An ExecutableObjectprovides a high level abstraction for artifacts that can be
executed on the Grid. It can be specialized as a Grid Task or a TaskGraph. An
ExecutableObject in cog-core has a unique identity and an execution status.

Listing 7.1: Interface definition for ExecutableObject
p u b l i c i n t e r f a c e E x e c u t a b l e O b j e c t
{

p u b l i c s t a t i c f i n a l i n t TASK = 1 ;
p u b l i c s t a t i c f i n a l i n t TASKGRAPH = 2 ;

p u b l i c vo id setName (S t r i n g name) ;
p u b l i c S t r i n g getName () ;

p u b l i c vo id s e t I d e n t i t y (I d e n t i t y i d) ;
p u b l i c I d e n t i t y g e t I d e n t i t y () ;

p u b l i c i n t ge tOb jec tType () ;

p u b l i c vo id s e t S t a t u s (S t a t u s s t a t u s) ;
p u b l i c vo id s e t S t a t u s (i n t s t a t u s) ;
p u b l i c S t a t u s g e t S t a t u s () ;

}

7.3.2 Task

A Task is the atomic unit of execution in cog-core. It represents a generic Grid
functionality including remote job execution, file transfer request, or information
query. It extends the ExecutableObject, hence it has a unique identity and execu-
tion status. It also has a security context, a specification, and a service contact.

The task identity helps in uniquely representing the task across the Grid. The se-
curity context represents the abstract security credentials of the task. It is apparent
that every underlying Grid implementation enforces its own security requirements
therefore making it necessary to abstract a generalized security context. Hence,
the security context in cog-core offers a common construct that can be extended
by the different implementations of Grid to satisfy the corresponding backend re-
quirements. The task specification represents the actual attributes or parameters
required for the execution of the Grid-centric task. The generalized specification
can be extended for common Grid tasks such as remote job execution, file transfer,
and information query. The service contact associated with a task symbolizes the
Grid resource required to execute it.

Listing 7.2: Interface definition for Task
p u b l i c i n t e r f a c e Task e x t e n d s E x e c u t a b l e O b j e c t
{

p u b l i c s t a t i c f i n a l i n t JOBSUBMISSION = 1 ;
p u b l i c s t a t i c f i n a l i n t FILETRANSFER = 2 ;
p u b l i c s t a t i c f i n a l i n t INFORMATIONQUERY = 3 ;

p u b l i c vo id se tType (i n t t ype) ;
p u b l i c i n t getType () ;

p u b l i c vo id s e t P r o v i d e r (S t r i n g p r o v i d e r) ;

36

p u b l i c S t r i n g g e t P r o v i d e r () ;

p u b l i c vo id s e t S p e c i f i c a t i o n (S p e c i f i c a t i o n s p e c i f i c a t i o n) ;
p u b l i c S p e c i f i c a t i o n g e t S p e c i f i c a t i o n () ;

p u b l i c vo id s e t S e c u r i t y C o n t e x t (S e c u r i t y C o n t e x t s e c u r i t y) ;
p u b l i c S e c u r i t y C o n t e x t g e t S e c u r i t y C o n t e x t () ;

p u b l i c vo id s e t S e r v i c e C o n t a c t (S e r v i c e C o n t a c t s e r v i c e c o n t a c t) ;
p u b l i c S e r v i c e C o n t a c t g e t S e r v i c e C o n t a c t () ;

p u b l i c vo id s e t S t d O u t p u t (S t r i n g o u t p u t) ;
p u b l i c S t r i n g g e t S t d O u t p u t () ;

p u b l i c vo id s e t S t d E r r o r (S t r i n g e r r o r) ;
p u b l i c S t r i n g g e t S t d E r r o r () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

p u b l i c vo id a d d S t a t u s L i s t e n e r (S t a t u s L i s t e n e r l i s t e n e r) ;
p u b l i c vo id r e m o v e S t a t u s L i s t e n e r (S t a t u s L i s t e n e r l i s t e n e r) ;

p u b l i c vo id a d d O u t p u t L i s t e n e r (O u t p u t L i s t e n e r l i s t e n e r) ;
p u b l i c vo id r e m o v e O u t p u t L i s t e n e r (O u t p u t L i s t e n e r l i s t e n e r) ;

p u b l i c vo id fromXML(S t r i n g t a s k) ;
p u b l i c S t r i n g toXML () ;
p u b l i c vo id f r o m S t r i n g (S t r i n g t a s k) ;
p u b l i c S t r i n g t o S t r i n g () ;

p u b l i c boo lean i s U n s u b m i t t e d () ;
p u b l i c boo lean i s A c t i v e () ;
p u b l i c boo lean isComp le ted () ;
p u b l i c boo lean i sSuspended () ;
p u b l i c boo lean i s F a i l e d () ;
p u b l i c boo lean i s C a n c e l e d () ;

p u b l i c Ca lenda r ge tSubmi t tedT ime () ;
p u b l i c Ca lenda r getCompletedTime () ;

}

7.3.3 Specification

Every Grid Task has an associatedSpecificationthat dictates the objective of the
task and the environment required to achieve the objective. The TaskHandler man-
age the tasks based on the parameters specified in the task specification.

Listing 7.3: Interface definition for Specification

p u b l i c i n t e r f a c e S p e c i f i c a t i o n
{

p u b l i c s t a t i c f i n a l i n t JOB SUBMISSION = 1 ;
p u b l i c s t a t i c f i n a l i n t FILE TRANSFER = 2 ;
p u b l i c s t a t i c f i n a l i n t INFORMATION QUERY = 3 ;

37

p u b l i c vo id se tType (i n t t ype) ;
p u b l i c i n t getType () ;

p u b l i c vo id s e t S p e c i f i c a t i o n (S t r i n g s p e c i f i c a t i o n) ;
p u b l i c S t r i n g g e t S p e c i f i c a t i o n () ;

}

A task specification is a generalized concept and can be further categorized into
JobSpecification, FileSpecification, and QuerySpecification (not implemented at
this time). It must be noted that the specific parameters required in a task specifi-
cation depend on the underlying Grid implementation used for the execution of the
Task. For example, GT3 has several required parameters that are not supported by
GT2 (and vice versa). However, the specification classes in cog-core offer some
commonly used attributes which can be extended or omitted based on the require-
ments of the task and specific Grid implementation.

The JobSpecification mentions all the important attributes needed for the remote
job execution. Most of the attributes provided by the JobSpecification class are
similar to the ones available in the Resource Specification Language (RSL) sup-
ported by the Globus Toolkit. Nevertheless, additional attributes can be added
based on specific requirements.

Listing 7.4: Interface definition for JobSpecification
p u b l i c i n t e r f a c e J o b S p e c i f i c a t i o n e x t e n d s S p e c i f i c a t i o n
{

p u b l i c vo id s e t E x e c u t a b l e (S t r i n g e x e c u t a b l e) ;
p u b l i c S t r i n g g e t E x e c u t a b l e () ;

p u b l i c vo id s e t D i r e c t o r y (S t r i n g d i r e c t o r y) ;
p u b l i c S t r i n g g e t D i r e c t o r y () ;

p u b l i c vo id se tArguments (S t r i n g arguments) ;
p u b l i c S t r i n g getArguments () ;

p u b l i c vo id s e t S t d O u t p u t (S t r i n g o u t p u t) ;
p u b l i c S t r i n g g e t S t d O u t p u t () ;

p u b l i c vo id s e t S t d I n p u t (S t r i n g i n p u t) ;
p u b l i c S t r i n g g e t S t d I n p u t () ;

p u b l i c vo id s e t S t d E r r o r (S t r i n g e r r o r) ;
p u b l i c S t r i n g g e t S t d E r r o r () ;

p u b l i c vo id se t Coun t (i n t coun t) ;
p u b l i c I n t e g e r ge tCoun t () ;

p u b l i c vo id s e t B a t c h J o b (boo lean boo l) ;
p u b l i c boo lean i s B a t c h J o b () ;

p u b l i c vo id s e t R e d i r e c t e d (boo lean boo l) ;
p u b l i c boo lean i s R e d i r e c t e d () ;

p u b l i c vo id s e t L o c a l E x e c u t a b l e (boo lean boo l) ;
p u b l i c boo lean i s L o c a l E x e c u t a b l e () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , S t r i n g v a l u e) ;

38

p u b l i c S t r i n g g e t A t t r i b u t e (S t r i n g name) ;
p u b l i c Enumera t ion g e t A l l A t t r i b u t e s () ;

}

TheFileSpecificationprovides the commonly used attributes for file transfers be-
tween Grid resources. It must be noted once again that not all attributes are sup-
ported by every Grid implementation.

Listing 7.5: Interface definition for FileSpecification

p u b l i c i n t e r f a c e F i l e S p e c i f i c a t i o n e x t e n d s S p e c i f i c a t i o n
{

p u b l i c vo id s e t S o u r c e S e r v e r (S t r i n g s e r v e r) ;
p u b l i c S t r i n g g e t S o u r c e S e r v e r () ;

p u b l i c vo id s e t D e s t i n a t i o n S e r v e r (S t r i n g s e r v e r) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n S e r v e r () ;

p u b l i c vo id s e t S o u r c e D i r e c t o r y (S t r i n g d i r e c t o r y) ;
p u b l i c S t r i n g g e t S o u r c e D i r e c t o r y () ;

p u b l i c vo id s e t D e s t i n a t i o n D i r e c t o r y (S t r i n g d i r e c t o r y) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n D i r e c t o r y () ;

p u b l i c vo id s e t S o u r c e F i l e (S t r i n g f i l e) ;
p u b l i c S t r i n g g e t S o u r c e F i l e () ;

p u b l i c vo id s e t D e s t i n a t i o n F i l e (S t r i n g f i l e) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n F i l e () ;

p u b l i c vo id s e t S o u r c e (S t r i n g s o u r c e) ;
p u b l i c S t r i n g g e t S o u r c e () ;

p u b l i c vo id s e t D e s t i n a t i o n (S t r i n g d e s t i n a t i o n) ;
p u b l i c S t r i n g g e t D e s t i n a t i o n () ;

p u b l i c vo id s e t B i n a r y (boo lean boo l) ;
p u b l i c boo lean i s B i n a r y () ;

p u b l i c vo id s e t N o t p t (boo lean boo l) ;
p u b l i c boo lean i s N o t p t () ;

p u b l i c vo id se tDcau (boo lean boo l) ;
p u b l i c boo lean isDcau () ;

p u b l i c vo id s e t B l o c k S i z e (i n t s i z e) ;
p u b l i c i n t g e t B l o c k S i z e () ;

p u b l i c vo id s e t T c p B u f f e r S i z e (i n t s i z e) ;
p u b l i c i n t g e t T c p B u f f e r S i z e () ;
p u b l i c vo id s e t P a r a l l e l S t r e a m s (i n t v a l u e) ;
p u b l i c i n t g e t P a r a l l e l S t r e a m s () ;

p u b l i c vo id s e t T h i r d P a r t y (boo lean boo l) ;
p u b l i c boo lean i s T h i r d P a r t y () ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;

39

p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;
}

Figure 7.2: A TaskGraph can represent multiple levels of hierarchical DAG

7.3.4 TaskGraph

A TaskGraphprovides a building block for expressing complex dependencies be-
tween tasks. All significantly advanced applications require mechanisms to exe-
cute client-side workflows that process the tasks based on user-defined dependen-
cies. Hence, the data structure representing the TaskGraph aggregates a set of Exe-
cutableObjects (Tasks and TaskGraphs) and allows the user to define dependencies
between these tasks. In graph theoretical terms, a TaskGraph provides the artifacts
to express workflows as a hierarchical directed acyclic graph (see Figure7.2). A
TaskGraph can theoretically contain infinite levels of hierarchy. However, practi-
cally it is constrained with the availability of resources (memory) on a particular
system.

Listing 7.6: Interface definition for TaskGraph
p u b l i c i n t e r f a c e TaskGraph e x t e n d s E x e c u t a b l e O b j e c t
{

p u b l i c vo id add (E x e c u t a b l e O b j e c t graphNode) ;
p u b l i c E x e c u t a b l e O b j e c t remove (I d e n t i t y i d) ;
p u b l i c E x e c u t a b l e O b j e c t g e t (I d e n t i t y i d) ;

p u b l i c E x e c u t a b l e O b j e c t [] t oA r ray () ;
p u b l i c Enumera t ion e lem en t s () ;

p u b l i c vo id se tDependency (Dependency dependency) ;
p u b l i c Dependency getDependency () ;

40

p u b l i c vo id addDependency (I d e n t i t y from , I d e n t i t y t o) ;
p u b l i c boo lean removeDependency (I d e n t i t y from , I d e n t i t y t o) ;

p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , Ob jec t v a l u e) ;
p u b l i c Ob jec t g e t A t t r i b u t e (S t r i n g name) ;

p u b l i c vo id a d d S t a t u s L i s t e n e r (S t a t u s L i s t e n e r l i s t e n e r) ;
p u b l i c vo id r e m o v e S t a t u s L i s t e n e r (S t a t u s L i s t e n e r l i s t e n e r) ;

p u b l i c i n t g e t S i z e () ;
p u b l i c boo lean isEmpty () ;
p u b l i c boo lean c o n t a i n s (I d e n t i t y i d) ;

p u b l i c i n t ge tUnsubmi t tedCoun t () ;
p u b l i c i n t ge tSubmi t t edCoun t () ;
p u b l i c i n t ge tAc t i veCoun t () ;
p u b l i c i n t ge tComple tedCount () ;
p u b l i c i n t ge tSuspendedCount () ;
p u b l i c i n t getResumedCount () ;
p u b l i c i n t g e t F a i l e d C o u n t () ;
p u b l i c i n t ge tCance ledCoun t () ;

}

Cog-core provides two additional utility classes that specializes the functionality
of the TaskGraph. TheTaskSetis a special type of TaskGraph with no depen-
dencies. Intuitively, it represents a bag of tasks that can be executed in parallel.
TheTaskQueueis another specialized TaskGraph that represents a first-in-first-out
(FIFO) queue. The dependencies in a TaskQueue are not set explicitly, but are
maintained implicitly based on the addition of a Task to the TaskQueue.

7.3.5 Status

Every ExecutableObject (Task or TaskGraph) has an associated execution status.
An ExecutableObject can be in one of the following status: unsubmitted, submit-
ted, active, suspended, resumed, failed, canceled, and completed. It must be noted
that not all status’ are supported by every Grid implementation. In other words, for
some Grid implementations it may not be possible to suspend and resume remote
execution.

It is easy to associate a simple Task with one of the above mentioned status. For
example, initially the task is unsubmitted; its status changes to submitted when
it is handled by a handler; its status changes to active when it is being executed
remotely, and so on. However, it is not apparent as to how a TaskGraph is mapped
to one the supported status. Cog-core uses the following logic to map a TaskGraph
to its appropriate status.

Listing 7.7: Pseudocode to determine the status of a TaskGraph

i f (any Task i n t h e TaskGraph has f a i l e d)
{

s t a t u s = f a i l e d
}
e l s e i f (a l l t a s k s a r e unsubm i t t ed)
{

s t a t u s = unsubm i t t ed
}

41

e l s e i f (eve ry t a s k i s e i t h e r comple ted or c a n c e l e d)
{

s t a t u s = comple ted
}
e l s e i f (any t a s k i s suspended)
{

s t a t u s = suspended
}
e l s e i f (any t a s k i s e i t h e r a c t i v e or resumed)
{

s t a t u s = a c t i v e
}
e l s e i f (any t a s k i s s u b m i t t e d)
{

s t a t u s = s u b m i t t e d
}
e l s e
{

i m p o s s i b l e t o g e t here , t h e above c a s e s t a k e c a r e
o f a l l c o n d i t i o n s .

}

Listing 7.8: Interface definition for Status
p u b l i c i n t e r f a c e S t a t u s
{

p u b l i c s t a t i c f i n a l i n t UNSUBMITTED = 0 ;
p u b l i c s t a t i c f i n a l i n t SUBMITTED = 1 ;
p u b l i c s t a t i c f i n a l i n t ACTIVE = 2 ;
p u b l i c s t a t i c f i n a l i n t SUSPENDED = 3 ;
p u b l i c s t a t i c f i n a l i n t RESUMED = 4 ;
p u b l i c s t a t i c f i n a l i n t FAILED = 5 ;
p u b l i c s t a t i c f i n a l i n t CANCELED = 6 ;
p u b l i c s t a t i c f i n a l i n t COMPLETED = 7 ;

p u b l i c a b s t r a c t vo id s e t S t a t u s C o d e (i n t s t a t u s) ;
p u b l i c a b s t r a c t i n t g e t S t a t u s C o d e () ;
p u b l i c a b s t r a c t vo id s e t P r e v S t a t u s C o d e (i n t s t a t u s) ;
p u b l i c a b s t r a c t i n t g e t P r e v S t a t u s C o d e () ;
p u b l i c a b s t r a c t vo id s e t E x c e p t i o n (Excep t i on e x c e p t i o n) ;
p u b l i c a b s t r a c t Excep t i on g e t E x c e p t i o n () ;
p u b l i c a b s t r a c t vo id se tMessage (S t r i n g message) ;
p u b l i c a b s t r a c t S t r i n g getMessage () ;
p u b l i c vo id se tT ime (Ca lenda r t ime) ;
p u b l i c Ca lenda r getTime () ;

}

7.3.6 Handlers

Cog-core contains theTaskHandlerand theTaskGraphHandler, to process a Task
and a TaskGraph respectively. Once a Task or a TaskGraph is submitted to the
appropriate handler, the handler interacts with the desired Grid implementation
and accomplishes the necessary tasks. The handlers in cog-core can be viewed as
adaptors that translate the abstract definitions of a Task and TaskGraph into im-
plementation specific constructs that is understood by the backend Grid services.
For example, a GT3 TaskHandler will extract the appropriate attributes from the

42

cog-core Task and make the necessary calls to the remote Grid service factory,
retrieve the Grid service handle, and interact with the newly created service in-
stance. Symmetric translations would be done for other Grid implementations.
Intuitively, a Handler is specific to the backed implementation and is the only part
of cog-core that needs to be extended for supporting additional Grid implementa-
tions. Since cog-core supports GT2, GT3, and SSH the appropriate handlers for
these are available. For cog-core to support Unicore, all one needs to do is to add
a Unicore handler.

The TaskHandler provides a simple interface to handle a generic Grid task submit-
ted to it. It is capable of categorizing the tasks and providing the appropriate func-
tionality for it. For example, the task handler will handle a remote job execution
differently than a file transfer request. Cog-core does not impose any restrictions
on the implementation of the task handler as long as its working is transparent to
the end user.

Listing 7.9: Interface definition for TaskHandler
p u b l i c i n t e r f a c e TaskHand ler
{

p u b l i c s t a t i c f i n a l i n t GENERIC = 1 ;
p u b l i c s t a t i c f i n a l i n t GT2 = 2 ;
p u b l i c s t a t i c f i n a l i n t GT3 = 3 ;

p u b l i c vo id se tType (i n t t ype) ;
p u b l i c i n t getType () ;

p u b l i c vo id submi t (Task t a s k)
th rows

I l l e g a l S p e c E x c e p t i o n ,
I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id suspend (Task t a s k)
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id resume (Task t a s k)
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id c a n c e l (Task t a s k)
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id remove (Task t a s k)
th rows Ac t i veTaskExcep t i on ;

p u b l i c Task [] g e t A l l T a s k s () ;
p u b l i c Enumera t ion g e t A c t i v e T a s k s () ;
p u b l i c Enumera t ion g e t F a i l e d T a s k s () ;
p u b l i c Enumera t ion ge tComple tedTasks () ;
p u b l i c Enumera t ion ge tSuspendedTasks () ;
p u b l i c Enumera t ion getResumedTasks () ;
p u b l i c Enumera t ion ge tCance ledTasks () ;

}

43

The TaskGraphHandler provides a similar functionality as the task handler inter-
face. However, it has an additional responsibility of enforcing the dependency on
the graph-like task sets submitted to it. It can be implemented as an advanced work-
flow engine coordinating the execution of tasks on corresponding Grid resources
honoring the user-defined dependencies.

Listing 7.10: Interface definition for TaskGraphHandler

p u b l i c i n t e r f a c e TaskGraphHandler
{

p u b l i c vo id submi t (TaskGraph t a s k g r a p h)
th rows
I l l e g a l S p e c E x c e p t i o n ,
I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id suspend ()
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id resume ()
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c vo id c a n c e l ()
th rows I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n ,
TaskSubmiss ionExcep t ion ;

p u b l i c Task [] g e t A l l T a s k () ;
p u b l i c Enumera t ion g e t A c t i v e T a s k s () ;
p u b l i c Enumera t ion g e t F a i l e d T a s k s () ;
p u b l i c Enumera t ion ge tComple tedTasks () ;
p u b l i c Enumera t ion ge tSuspendedTasks () ;
p u b l i c Enumera t ion getResumedTasks () ;
p u b l i c Enumera t ion ge tCance ledTasks () ;

}

7.4 Programmer’s Guide

1. Executing a remote job execution task (7.4.1)

2. Executing a third party file transfer task (7.4.2)

3. Executing a simple TaskGraph (DAG) (7.4.3)

4. Executing a hierarchical DAG (7.4.4)

5. Writing a custom TaskHandler (7.4.5)

7.4.1 Executing a remote job execution task

Executing a remote job becomes extremely simple with cog-core. To begin with,
create a Task with the appropriate attributes.

Listing 7.11: Create a Task object

/∗ C r e a t e a new job submiss ion t a s k named ‘ ‘ myTestTask’ ’ ∗ /

44

Task t a s k = new TaskImpl (‘ ‘ myTestTask’ ’ , Task . JOBSUBMISSION) ;

/∗ Set t h e d e s i r e d p r o v i d e r . D e f a u l t o p t i o n s a r e
GT2, GT3, or SSH

∗ /
t a s k . s e t P r o v i d e r (‘ ‘GT3’ ’) ;

Then, create a JobSpecification for the task and set the appropriate attributes as per
the task requirements.

Listing 7.12: Create a task specification

/∗ C r e a t e a new J o b S p e c i f i c a t i o n ∗ /
J o b S p e c i f i c a t i o n spec =new J o b S p e c i f i c a t i o n I m p l () ;

/∗ Set t h e l o c a t i o n and name of t h e e x e c u t a b l e.
I f t h e e x e c u t a b l e i s a l o c a l e x e c u t a b l e, t hen
spec. s e t L o c a l E x e c u t a b l e(t r u e)

∗ /
spec . s e t E x e c u t a b l e (‘ ‘ / b in / l s’ ’) ;

/∗ Set t h e arguments (i f any)
f o r t h e e x e c u t a b l e

∗ /
spec . se tArguments (‘ ‘− l a ’ ’) ;

/∗ Set t h e name of t h e f i l e which s e r v e s
as t h e i n p u t t o t h e e x e c u t a b l e

I f t h e i n p u t f i l e needs t o be r e d i r e c t e d
from t h e l o c a l machine, t hen
spec. s e t L o c a l E x e c u t a b l e(t r u e)

∗ /
spec . s e t S t d I n p u t (‘ ‘ core− t e s t I n p u t’ ’) ;

/∗ Set t h e name of t h e f i l e t o which t h e remote
o u t p u t must be s t o r e d i n .

I f t h e remote o u t p u t needs t o be r e d i r e c t e d
t o t h e l o c a l machine, t hen
spec. s e t R e d i r e c t e d(t r u e)

I f t h e remote o u t p u t needs t o be man ipu la ted a t
t h e l o c a l machine r a t h e r t han s t o r i n g i t i n a
f i l e , t hen
spec. s e t R e d i r e c t e d(t r u e) ;
spec. s e t S t d O u t p u t(n u l l) ;
The o u t p u t i s now a v a i l a b l e from
t a s k. g e t O u t p u t() ; and can be used
or d i s p l a y e d as d e s i r e d.

∗ /
spec . s e t S t d O u t p u t (‘ ‘ core−t e s t O u t p u t’ ’) ;

45

/∗ Set t h e e x e c u t i o n mode of t h e job ∗ /
spec . s e t B a t c h J o b (t r u e) ;

/∗ Add a d d i t i o n a l a t t r i b u t e s t h a t a r e no t
p r ov i de d by d e f a u l t . These add on
a t t r i b u t e s w i l l be c o n s i d e r e d by t h e
h a n d l e r on ly i f i t s u p p o r t s i t .

∗ /
spec . s e t A t t r i b u t e (‘ ‘ runCount’ ’ , ‘ ‘546 ’ ’) ;

/∗ Ass ign t h i s s p e c i f i c a t i o n t o t h e t a s k ∗ /
t a s k . s e t S p e c i f i c a t i o n (spec) ;

Next, assign the desired security credentials to the task. This step assumes you
have a valid uses certificate successfully obtained from appropriate certificate au-
thority.

Listing 7.13: Create security credentials
/∗ Since t h e p r o v i d e r i s GT3

c r e a t e a G l o b u s S e c u r i t y C o n t e x t.

I f a non−g lobus s e c u r i t y c o n t e x t i s
r e q u i r e d , t hen use t h e
S e c u r i t y C o n t e x t I m p l c l a s s and s e t t h e
c r e d e n t i a l s as r e q u i r e d by t h e h a n d l e r

∗ /
G l o b u s S e c u r i t y C o n t e x t I m p l s e c u r i t y C o n t e x t =

new G l o b u s S e c u r i t y C o n t e x t I m p l () ;

/∗ Ass ign t h e d e f a u l t c r e d e n t i a l s
a v a i l a b l e as a v a l i d proxy c e r t i f i c a t e
whose l o c a t i o n i s s p e c i f i e d i n t h e
cog. p r o p e r t i e s f i l e p r e s e n t i n t h e
\$HOME/ . g lobus d i r e c t o r y

To a s s i g n non−d e f a u l t c r e d e n t i a l s
c r e a t e a GSSCreden t ia l and pass
t h i s GSSCreden t ia l as t h e argument
i n s t e a d of n u l l

∗ /
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l s (n u l l) ;

/∗ Ass ign t h i s s e c u r i t y c r e d e n t i a l t o t h e t a s k ∗ /
t a s k . s e t S e c u r i t y C o n t e x t (s e c u r i t y C o n t e x t) ;

Next, assign a ServiceContact to the task. This attribute defines the location of the
remote Grid resource where the task is to be executed.

Listing 7.14: Create a service contact
S e r v i c e C o n t a c t s e r v i c e =

new S e r v i c e C o n t a c t I m p l (

46

‘ ‘ h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 /
ogsa / s e r v i c e s / base / gram /
Mas te rFo rkManagedJobFac to ryServ i ce’ ’) ;

t a s k . s e t S e r v i c e C o n t a c t (s e r v i c e) ;

Next, create a TaskHandler and submit the task for execution.

Listing 7.15: Create a task handler

TaskHand ler h a n d l e r =new TaskHand le r Imp l () ;
t r y
{

h a n d l e r . submi t (t a s k) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’) ;
i s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’) ;
t s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’) ;
i s p e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’) ;
i s c e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task (desired in most interactive tasks),
then before submitting the task to a handler subscribe to the task for its status
changes.

t a s k . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task, implement the sta-
tusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED)
{

/∗ Makes s e n s e i f
spec. s e t R e d i r e c t e d(t r u e) ;

spec. s e t S t d O u t p u t(n u l l) ;

47

∗ /
l o g g e r . debug (‘ ‘ Output = ’ ’

+ t a s k . g e t S t d O u t p u t ()) ;
System . e x i t (1) ;

}
}

7.4.2 Executing a third party file transfer task

Executing a file transfer is extremely simple with cog-core. To begin with, create
a Task with the appropriate attributes.

Listing 7.16: Create a Task object
/∗ C r e a t e a new f i l e t r a n s f e r t a s k named ‘ ‘ myTestTask’ ’ ∗ /
Task t a s k = new TaskImpl (‘ ‘ myTestTask’ ’ , Task . FILETRANSFER) ;

/∗ Set t h e d e s i r e d p r o v i d e r . D e f a u l t o p t i o n s a r e
GT2, GT3, or SSH

∗ /
t a s k . s e t P r o v i d e r (‘ ‘GT2’ ’) ;

Then, create a FileSpecification for the task and set the appropriate attributes as
per the task requirements.

Listing 7.17: Create a task specification
/∗ C r e a t e a new F i l e S p e c i f i c a t i o n ∗ /
F i l e S p e c i f i c a t i o n spec =new F i l e S p e c i f i c a t i o n I m p l () ;

/∗ Set t h e s o u r c e and d e s t i n a t i o n f i l e s ∗ /
spec . s e t S o u r c e (‘ ‘ g s i f t p :/ / domain: 2 8 1 1 / /home/ f i l e n a m e ’ ’) ;
spec . s e t D e s t i n a t i o n (‘ ‘ g s i f t p :/ / domain: 2 8 1 1 / /home/ f i l e n a m e ’ ’) ;

/∗ I f i t i s a t h i r d p a r t y f i l e t r a n s f e r ∗ /
spec . s e t T h i r d P a r y t (t r u e) ;

/∗ Ass ign t h i s s p e c i f i c a t i o n t o t h e t a s k ∗ /
t a s k . s e t S p e c i f i c a t i o n (spec) ;

Next, assign the desired security credentials to the task. This step assumes you
have a valid uses certificate successfully obtained from appropriate certificate au-
thority.

Listing 7.18: Create security credentials
/∗ Since t h e p r o v i d e r i s GT2

c r e a t e a G l o b u s S e c u r i t y C o n t e x t.

I f a non−g lobus s e c u r i t y c o n t e x t i s
r e q u i r e d , t hen use t h e
S e c u r i t y C o n t e x t I m p l c l a s s and s e t t h e
c r e d e n t i a l s as r e q u i r e d by t h e h a n d l e r

∗ /
G l o b u s S e c u r i t y C o n t e x t I m p l s e c u r i t y C o n t e x t =

new G l o b u s S e c u r i t y C o n t e x t I m p l () ;

48

/∗ Ass ign t h e d e f a u l t c r e d e n t i a l s
a v a i l a b l e as a v a l i d proxy c e r t i f i c a t e
whose l o c a t i o n i s s p e c i f i e d i n t h e
cog. p r o p e r t i e s f i l e p r e s e n t i n t h e
\$HOME/ . g lobus d i r e c t o r y

To a s s i g n non−d e f a u l t c r e d e n t i a l s
c r e a t e a GSSCreden t ia l and pass
t h i s GSSCreden t ia l as t h e argument
i n s t e a d of n u l l

∗ /
s e c u r i t y C o n t e x t . s e t C r e d e n t i a l s (n u l l) ;

/∗ Ass ign t h i s s e c u r i t y c r e d e n t i a l t o t h e t a s k ∗ /
t a s k . s e t S e c u r i t y C o n t e x t (s e c u r i t y C o n t e x t) ;

Note that for GT2 file transfers, there is no need to assign a ServiceContact since
the source and destination file names implicitly contain the remote machine names.
However, for other providers it may be required to specify the ServiceContact.

Listing 7.19: Create a service contact

S e r v i c e C o n t a c t s e r v i c e =
new S e r v i c e C o n t a c t I m p l (‘ ‘ 1 2 7 . 0 . 0 . 1’ ’) ;

t a s k . s e t S e r v i c e C o n t a c t (s e r v i c e) ;

Next, create a TaskHandler and submit the task for execution.

Listing 7.20: Create a task handler

TaskHand ler h a n d l e r =new TaskHand le r Imp l () ;
t r y
{

h a n d l e r . submi t (t a s k) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’) ;
i s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’) ;
t s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’) ;
i s p e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’) ;
i s c e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}

49

If it is required to monitor the status of the task (desired in most interactive tasks),
then before submitting the task to a handler subscribe to the task for its status
changes.

t a s k . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task, implement the sta-
tusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED| |
s t a t u s . g e t S t a t u s C o d e () = = S t a t u s . FAILED)

{
l o g g e r . i n f o (‘ ‘ Task Done’ ’) ;
System . e x i t (1) ;

}
}

7.4.3 Executing a simple TaskGraph (DAG)

In order to create a TaskGraph, we assume that we have created 3 tasks: task1,
task2, and task3. Instructions for creating job submission and file transfer tasks are
available in the previous sections (7.4.1and7.4.2). We then create a TaskGraph
and add a dependency between these tasks.

Listing 7.21: Create a TaskGraph with a dependency

TaskGraph t g =new TaskGraphImpl () ;

/∗ Give a c o n v e n i e n t name t o t h e TaskGraph ∗ /
t g . setName (‘ ‘ t e s t G r a p h’ ’) ;

/∗ Add t h e t a s k s t o t h e TaskGraph ∗ /
t g . add (t a s k 1) ;
t g . add (t a s k 2) ;
t g . add (t a s k 3) ;

/∗ Add d e p e n d e n c i e sbetween t h e s e t a s k s.

Dependency i s added as
t a s k 1−−> t a s k 2−−> t a s k 3.

Th is i m p l i e s t a s k 1 i s ex ec u t ed b e f o r e t a s k 2
and t a s k 2 i s ex ec u t ed b e f o r e t a s k 3.

∗ /
t g . addDependency (t a s k 1 . g e t I d e n t i t y () ,

t a s k 2 . g e t I d e n t i t y ()) ;

50

t g . addDependency (t a s k 2 . g e t I d e n t i t y () ,
t a s k 3 . g e t I d e n t i t y ()) ;

Next, create a TaskGraphHandler and submit the task for execution.

Listing 7.22: Create a task graph handler

TaskGraphHandler h a n d l e r =new TaskGraphHandler Impl () ;
t r y
{

h a n d l e r . submi t (t g) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’) ;
i s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’) ;
t s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’) ;
i s p e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’) ;
i s c e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task graph (desired in most interactive
task graphs), then before submitting the task graph to a handler subscribe to the
task graph for its status changes.

t g . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task graph, implement the
statusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED| |
s t a t u s . g e t S t a t u s C o d e () = = S t a t u s . FAILED)

{
l o g g e r . i n f o (‘ ‘ Task Graph Done’ ’) ;
System . e x i t (1) ;

}
}

51

7.4.4 Executing a hierarchical TaskGraph

In order to create a hierarchical TaskGraph, we assume that we have created 3
tasks and 1 TaskGraph: task1, task2, task3, and tg. Instructions for creating job
submission and file transfer tasks and simple TaskGraphs are available in the pre-
vious sections (7.4.1, 7.4.2, and7.4.3). We then create a TaskGraph and add a
dependency between these ExecutableObjects.

Listing 7.23: Create a TaskGraph with a dependency
TaskGraph h tg =new TaskGraphImpl () ;

/∗ Give a c o n v e n i e n t name t o t h e TaskGraph ∗ /
h tg . setName (‘ ‘ t e s t G r a p h’ ’) ;

/∗ Add t h e E x e c u t a b l e O b j e c t st o t h e TaskGraph ∗ /
h tg . add (t a s k 1) ;
h tg . add (t a s k 2) ;
h tg . add (t a s k 3) ;
h tg . add (t g) ;

/∗ Add d e p e n d e n c i e sbetween t h e s e E x e c u t a b l e O b j e c t s.

Dependency i s added as
t a s k 1−−> t a s k 2−−> t a s k 3−−> t g .

Th is i m p l i e s t a s k 1 i s ex ec u t ed b e f o r e t a s k 2
and t a s k 2 i s ex ec u t ed b e f o r e task3 , and
t a s k 3 i s ex ec u t ed b e f o r e TaskGraph t g .

∗ /
h tg . addDependency (t a s k 1 . g e t I d e n t i t y () ,

t a s k 2 . g e t I d e n t i t y ()) ;

h tg . addDependency (t a s k 2 . g e t I d e n t i t y () ,
t a s k 3 . g e t I d e n t i t y ()) ;

h tg . addDependency (t a s k 3 . g e t I d e n t i t y () ,
t g . g e t I d e n t i t y ()) ;

Next, create a TaskGraphHandler and submit the task for execution.

Listing 7.24: Create a task graph handler
TaskGraphHandler h a n d l e r =new TaskGraphHandler Impl () ;

t r y
{

h a n d l e r . submi t (h tg) ;
} c a t c h (I n v a l i d S e c u r i t y C o n t e x t E x c e p t i o n i s e)
{

l o g g e r . e r r o r (‘ ‘ S e c u r i t y Excep t i on’ ’) ;
i s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (TaskSubmiss ionExcep t ion t s e)
{

l o g g e r . e r r o r (‘ ‘ TaskSubmiss ion Excep t i on’ ’) ;

52

t s e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I l l e g a l S p e c E x c e p t i o n i s p e)
{

l o g g e r . e r r o r (‘ ‘ S p e c i f i c a t i o n Excep t i on’ ’) ;
i s p e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} c a t c h (I n v a l i d S e r v i c e C o n t a c t E x c e p t i o n i s c e)
{

l o g g e r . e r r o r (‘ ‘ S e r v i c e Con tac t Excep t i on’ ’) ;
i s c e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}

If it is required to monitor the status of the task graph (desired in most interactive
task graphs), then before submitting the task graph to a handler subscribe to the
task graph for its status changes.

h tg . a d d S t a t u s L i s t e n e r (t h i s) ;

If registered to listen to the status notification of the task graph, implement the
statusChanged() function.

p u b l i c vo id s t a t u s C h a n g e d (S t a t u s E v e n t e v e n t)
{

S t a t u s s t a t u s = e v e n t . g e t S t a t u s () ;

l o g g e r . debug (‘ ‘ S t a t u s changed t o’ ’
+ s t a t u s . g e t S t a t u s C o d e ()) ;

i f (s t a t u s . g e t S t a t u s C o d e () = = S t a t u s .COMPLETED| |
s t a t u s . g e t S t a t u s C o d e () = = S t a t u s . FAILED)

{
l o g g e r . i n f o (‘ ‘ Task Graph Done’ ’) ;
System . e x i t (1) ;

}
}

7.4.5 Writing a custom TaskHandler

To write a custom TaskHandler, create a class, say foo.bar.MyHandler that imple-
ments the org.globus.cog.core.interfaces.TaskHandler interface.

In order to successfully execute an ExecutableObject with this custom handler
you need to associate this handler with a provider name, say “MyProvider”. And
provide the mapping between the provider name and the class name using the
cog.properties file. Instructions for adding an entry in the cog.properties file is
available in Section7.2.3. Hence, we add the following entry in the cog.properties
file:

MyProvider = foo.bar.MyHandler

Now, in order to use this handler with any ExecutableObject simple associate that
ExecutableObject with the provider “MyProvider”.

task.setProvider(‘‘MyProvider’’);

53

7.5 jglobus

54

8 Karajan

Karajan is a workflow language and workflow engine. It aims to provide the scien-
tific community with an easy to use tool to define complex jobs on computational
grids, while keeping scalability and offering some advanced features, like failure
handling, checkpointing, dynamic workflows, and distributed workflows.

Workflows in Karajan are defined using a structured language based on XML, and
extensible through Java. The building block of the language is the element, which
loosely translates into an XML element/container. Various elements are included,
such as elements for parallel processing, parallel iterators, grid elements (ie. job
submission and file transfer), etc. Common tasks can be grouped using templates,
and reused from multiple locations.

The execution engine in Karajan is based on an event model, which allows effec-
tive separation between the workflow specification and the runtime state. Elements
react to events received from other elements, and generate their own events. These
events provide notification of status changes within the execution, or can be used
to control the execution of elements. The complete runtime state is contained
within the events, which allows the elements themselves to exist on different re-
sources. This mechanism also allows an external controller, which has access to
these events, to completely control the execution of the worklfow. It also allows a
certain level of modification to the elements to be performed, at runtime, without
affecting the execution of other elements.

As an example, suppose a large job requires a transfer of the resulting data, after
the completion of all calculations. Also suppose, the specification of the transfer
points to a non-existing resource as the destination for the data. The transfer will
fail. A tool can be used to intercept the failure notification and present the user with
a visual message. The user can then proceed to modify the bogus specification,
after which, the particular failing element can be restarted using the state present
in the failure event.

8.1 Installation

8.1.1 Obtaining the Source Code

Karajan can be downloaded from the Java CoG Kit CVS archive. Instructions
regarding the Java CoG Kit requirements and details on obtaining the Java CoG
Kit sources, are available in Section4.

8.1.2 Compiling Karajan

Change directory tocog/modules/karajan and type ’ant dist’. This will compile
Karajan and all its dependencies. It will also create adist directory containing the
distribution of Karajan. Inside thedist directory, thebin directory will contain the
necessary scripts that can be used to launch Karajan.

55

8.2 Using Karajan

There are two interfaces to Karajan:

1. The command line interface, accessible throughbin/karajanprovides a very
simple interface, which is mainly non-interactive and does not provide feed-
back on the execution of the workflow.

2. The graphical interface, which can be started throughbin/karajan-gui, can
display a graphical representation of the workflow and other progress infor-
mation and statistics. It also allows interaction with the workflow.

8.2.1 Command Line Interface

The command line interface allows you to start a workflow. The syntax is very
simple:

>./karajan workflow.xml

Karajan will then try to load, parse, and execute the specified workflow. Any
resulting messages will be printed on the console.

8.2.2 Graphical Interface

The graphical interface allows for additional interaction with the execution engine.
It can be started usingbin/karajan-gui. The following command line options are
supported:

-help: Displays a brief usage summary

-load filename: Can be used to load a workflow upon starting

-run : Used in conjunction with-load, will immediately start the execution of the
specified workflow.

When started without any parameters, an empty view is presented (Figure8.1).

Figure 8.1: An Empty Karajan Desktop

56

The File->Open menu item can be used to load a workflow. After the workflow is
loaded, a graph that represents the control flow of the loaded specification will be
drawn. An example can be seen in Figure8.2.

Figure 8.2: A Workflow Was Loaded

The workflow can be started by pressing theStart button located on the toolbar.
Once started, the status of each node will be visible as an overlayed image over the
node icon. The following states exist:

None : The node has not yet been executed

Running () : The node is being executed

Completed () : The node completed execution successfully

Failed () : Execution of the node failed

Breakpoint () : A breakpoint was set on the node

Paused () : The execution was paused at the current node, possible due to a breakpoint
being set on the node

Setting A Breakpoint

Breakpoints can be set using a node’s context menu. Clicking on a node with the
right mouse button, will pop-up the menu, as it can be seen in Figure8.3

Whenever the execution of the workflow reaches the node where a breakpoint was
set, a message dialog will pop up, and the execution of the specific thread/branch
where the node is located will be suspended (see Figure8.4).

The execution can then be resumed using the context menu of the node (accessible
by right-clicking on the node). In the case of a paused node, an item that will
resume the execution will be present in the menu (see Figure8.5).

57

Figure 8.3: The Node Context Menu

Error Handling

Errors that may occur during the execution of the workflow, which are not ex-
plicitly handled in the workflow specification, will result in a dialog window that
provides several options for dealing with the error. A sample error dialog is pre-
sented in Figure8.6.

A description of each option provided by the error dialog is shown below:

Abort : Passes the error to the workflow engine, which will result in an error message
dump on the console and the immediate termination of the workflow.

Ignore : Completely ignores the error as if it has never occurred.

Restart : Restarts the failed node. You can also specify the number of times that the
node will be restarted before the execution is aborted.

Apply to all errors of this type : Whenever an identical error occurs on any node, the same action will be
applied automatically.

Apply to all errors for this element : All other errors that occur on the node will automatically be treated with the
same action.

8.3 Language Specification

The Karajan specifications are written in an XML based language. Extensive in-
formation about XML is available fromhttp://www.w3.org/XML .

8.3.1 Concepts

Elements

The building block of a Karajan workflow is an XML element. The structure of
Karajan workflows is very similar to that of structured languages (such as C, Java,

58

http://www.w3.org/XML

Figure 8.4: A Breakpoint Was Reached

Pascal, etc). Most elements can also act as containers for other elements. Each
element performs a specific function, or describes how contained elements relate
to each other.

Generally, Karajan imposes little restrictions on where particular elements can ap-
pear. However, a few elements can only appear inside other elements, but this
restriction does not imply anything about the depth of the containment. The fol-
lowing example illustrates the previous sentence.

Given the elementsmain andsub, and given thatsubcan only appear insidemain,
both the following examples are valid:

1.
. . .

<main>
. . .

<sub>
. . .

< / sub>
. . .

< / main>
. . .

2.
. . .

<main>
. . .

<o t h e r>
. . .

<sub>
. . .

< / sub>
. . .

< / o t h e r>
. . .

< / main>

59

Figure 8.5: Resuming Execution

. . .

To eliminate ambiguity in such cases, thesubelement will be denoted bymain>sub.

Variables

Variables can be used in Karajan to store temporary values, values that can change
and appear often in the specification, as counters for iterators, etc.

Defining Variables Variables can be defined explicitly using thesetvar (8.8.33)

element, which takes two attributes:nameand value. The following example
assigns the valueblah to the variable namedvariable1:

<s e t v a r name=” v a r i a b l e 1” v a l u e =” b lah” />

If the valueattribute is not specified,setvar (8.8.33) will use the value of the default
return variable ($). This can be used for getting values from functions1:

<s e t v a r name=” v a r i a b l e 2”>
<!−− r ead t h e c o n t e n t s o f / tmp/ e x i t c o d e −−>
< f u n c t i o n : r e a d F i l e name=” / tmp/ e x i t c o d e” />

< / s e t v a r>

Variable Expansion Variables can be expanded inside element attributes by en-
closing them inside curly brackets. Nested expansion is also possible, but must be
used with care.

Examples:

1 more about functions in Section8.3.8

60

Figure 8.6: Error Dialog

1.
<s e t v a r name=” v a r i a b l e 1” v a l u e =” b lah” />
<echo message=” v a r i a b l e 1={ v a r i a b l e 1} ” />

2.
<!−− v a r i a b l e 2 i s no t d e f i n e d; t h e v a l u e w i l l no t be −−>
<!−− expanded −−>
<s e t v a r name=” v a r i a b l e 1” v a l u e =” { v a r i a b l e 2} ” />

<s e t v a r name=” v a r i a b l e 2” v a l u e =” b lah” />

<!−− a t t h i s po in t , bo th v a r i a b l e 1 and v a r i a b l e 2 −−>
<!−− a r e d e f i n e d −−>
<!−− t h e f i r s t expans ion w i l l e v a l u a t e v a r i a b l e 1 t o −−>
<!−− { v a r i a b l e 2} −−>
<!−− t h e second expans ion w i l l e v a l u a t e v a r i a b l e 2 t o −−>
<!−− ” b l ah” −−>
<echo message=” { v a r i a b l e 1} ” />

3.
<s e t v a r name=” v a r i a b l e 2” v a l u e =” b lah” />

<!−− v a r i a b l e 2 i s now d e f i n e d −−>
<!−− v a r i a b l e 1 w i l l be a s s i g n e d t h e v a l u e o f ” b l ah” −−>
<!−− d i r e c t l y −−>
<s e t v a r name=” v a r i a b l e 1” v a l u e =” { v a r i a b l e 2} ” />

<echo message=” { v a r i a b l e 1} ” />

All three examples will print the same value:blah

The Scope of Variables The scope of variables is limited to the element inside
which they appear, unless they are overridden in sub-elements. In such a case,

61

the scope of the override will be limited to the element in which the variable was
overridden. The following example illustrates this:

<s e q u e n t i a l>
<!−− d e f i n e t h e v a r i a b l e ” va r” −−>
<s e t v a r name=” va r” v a l u e =” one” />

<!−− p r i n t i t s v a l u e on t h e c o n s o l e −−>
<echo message=” { va r} ” />

<!−− a c o n t a i n e r −−>
<s e q u e n t i a l>

<!−− o v e r r i d e ” va r” −−>
<s e t v a r name=” va r” v a l u e =” two” />

<!−− p r i n t t h e v a l u e on t h e c o n s o l e −−>
<echo message=” { va r} ” />

< / s e q u e n t i a l>

<!−− a t t h i s p o i n t ” va r” w i l l be ” one” a g a i n −−>
<echo message=” { va r} ” />

< / s e q u e n t i a l>

<!−− ” va r” does no t e x i s t he re −−>
<echo message=” { va r} ” />

The example will produce the following output:

one
two
one
{ va r}

In the lastecho(8.8.4) element, Karajan tries to expandvar, but since it cannot be
found, it prints the message literally.

8.3.2 Parallelism

Karajan supports two basic containers through which parallelism can be achieved,
namelysequential(8.8.32) andparallel (8.8.22) . Both containers are synchronous,
which means that their execution will terminate when all sub-elements have fin-
ished execution. This behavior can be overridden in any element, by specifying
thesync=”false” attribute. The following examples illustrate the use ofsequential
(8.8.32) andparallel (8.8.22) containers, as well as synchronous and asynchronous
execution. On the right side, an image showing the resulting control flow of the
specifications on the left is shown:

62

Sequential execution

<s e q u e n t i a l>
<e lement1 />
<e lement2 />
<e lement3 />

< / s e q u e n t i a l>

Parallel execution

<p a r a l l e l>
<e lement1 />
<e lement2 />
<e lement3 />

< / p a r a l l e l>

Mixed sequential/parallel execution

<s e q u e n t i a l>
<e lement1 />
<p a r a l l e l>

<e lement2 />
<e lement3 />

< / p a r a l l e l>
<e lement4 />

< / s e q u e n t i a l>

Sequential execution with asynchronous ele-
ment

<s e q u e n t i a l>
<e lement1 />
<e lement2 sync=” f a l s e” />
<e lement3 />
<e lement4 />

< / s e q u e n t i a l>

Parallel execution with asynchronous ele-
ment

<p a r a l l e l>
<e lement1 />
<e lement2 />
<e lement3 sync=” f a l s e” />

< / p a r a l l e l>

8.3.3 Iterators

Iterators are used in Karajan to execute a part of the workflow repetitively. All
iterators can have either a sequential behavior (the default), in which an iteration
begins execution only after the previous iteration has completed execution, or a
parallel behavior (switched on using theparallel=”true” attribute), in which all

63

iterations are executed in parallel. The parallel behavior of an iterator does not ap-
ply to contained elements. If a parallel iterator has two sub-elements, the elements
will execute in sequential order. This can be prevented using an explicitparallel
(8.8.22) container inside the iterator.

Two iterators exist:for (8.8.7) andforeach (8.8.8) . Both have a mandatory attribute
(name) which represents the name of the iteration variable.

• The for (8.8.7) iterator is used for iterations across integer ranges and takes
two numerical attributes, representing the first and last value. There are two
equivalent ways of specifying the two attributes, as shown in the following
examples:

< f o r name=” i t e r a t i o n” from=” 1” t o =” 4”>
<echo message=” I t e r a t i o n { i t e r a t i o n} ” />

< / f o r>

and

< f o r name=” i t e r a t i o n” range =” 1 , 4”>
<echo message=” I t e r a t i o n { i t e r a t i o n} ” />

< / f o r>

The result in both cases is:

1
2
3
4

• The foreach (8.8.8) iterator can be used to iterate across arbitrary values, or
files in a directory (a feature that needs a little polishing). Iteration values
can be specified using thein attribute. To iterate on the files in a directory,
thedir attribute can be used.

Examples:

< f o r e a c h name=” i t e r a t i o n” i n =” one , two , t h r e e , f o u r ”>
<echo message=” I t e r a t i o n { i t e r a t i o n} ” />

< / f o r>

would produce the following output:

one
two
t h r e e
f o u r

while

< f o r name=” f i l e ” d i r =” / home/ johndoe”>
<echo message=” F i l e { f i l e } ” />

< / f o r>

would list all the files contained in the home directory of userjohndoe.

64

8.3.4 Templates

Templates can be used to define reusable code, and are somewhat similar to proce-
dures in other languages. Templates can accept named parameters.

Definition of templates can be done using thetemplateDef(8.8.35) element. The
mandatory attributenamespecifies the name of the template. The body of the
template can consist of any Karajan elements. An additional element (default
(8.8.3)) can be used to designate default values for parameters. A simple template
definition is shown below:

< t e m p l a t e d e f name=” sample”>
<d e f a u l t name=” arg1” v a l u e =” d e f a u l t 1” />
<d e f a u l t name=” arg2” v a l u e =” d e f a u l t 2” />
<echo message=” arg1 i s { arg1} ” />
<echo message=” arg2 i s { arg2} ” />
<echo message=” arg3 i s { arg3} ” />

< / t e m p l a t e d e f>

Template invocations can be made via thetemplate (8.8.34) element, which ac-
cepts thenameattribute, plus any number of other arguments that are passed to the
template:

< t e m p l a t e name=” sample”
a rg1 =” va lue1”
a rg2 =” va lue2”
a rg3 =” va lue3” />

All templates are re-entrant as long as no external resources are involved. Variables
defined or overridden inside templates are considered local.

8.3.5 Grid-related Elements

Karajan contains a series of elements that are divided into three main categories:
grid resource description, grid tasks, and configuration.

Grid Resource Description Elements

• scheduler>grid (8.8.26) encapsulates a set of resources that will be used by
the scheduler. Accepts an optionalnameattribute.

• scheduler>grid>host (8.8.27) designates a single contact point (a remote
host). The mandatorynameattribute denotes the hostname of the remote
contact. Acpusattribute allows the specification of the number of CPUs the
host has. This information may be used for scheduling purposes. Thehost
variable is available inside thescheduler>grid>host (8.8.27) element, and
has the value of thenameattribute.

• scheduler>grid>host>service(8.8.28) defines a host service. Theversion
attribute allows the definition of a logical handle that can be used to group
multiple services based on technology/version. Thetypeattribute specifies
the service type. The current possible values arejob-submission, andfile-
transfer. The exact details of the service are expressed in the form of a URL.
The format and details of the service URLs differ from handler to handler.

65

The Handlers Section8.4provides details of all supported handlers and their
details.

The following example illustrates the use of the above elements:

<g r i d name=” d e f a u l t”>
< f o r name=” index” from=” 1” t o =” 20”>

<h o s t name=” lg0n{ i ndex} . p t s . uml . mov” cpus=” 1”>
<s e r v i c e

v e r s i o n=” gt2 −2.4.0”
t ype =” job−submiss ion”
u r l =” { h o s t} :2119/ jobmanager−f o r k ” />

<s e r v i c e
v e r s i o n=” gt2 −2.4.0”
t ype =” f i l e − t r a n s f e r”
u r l =” g s i f t p : / / { h o s t} :2811” />

< / h o s t>
< / f o r>

< / g r i d>

Grid Tasks

Two types of grid tasks are available: remote execution and transfer. For all tasks
that require one or more host attributes, the hosts may need to exist in the grid
definition, such that the handlers can extract service contact information. In some
cases, defaults may work.

• gridExecute (8.8.14) can be used to submit a remote job. The attributes are2:

host* : Specifies the host to which the job will be submitted. The host must
exist in the grid description, such that the handler can extract the cor-
rect service information. If the attribute is not specified, it is up to the
scheduler to pick a host for this job.

executable : The executable to be run. It must exist on the remote site. If it does
not, it can be transfered beforehand using a transfer task.

args* : The attributes to be passed to the executable.

stdin* : If input redirection is desired, this attribute can be used to specify a
remote file that will be redirected to the process’ standard input.

stdout* : Can be used to redirect the standard output of the job to a remote file.

stderr* : Used optionally to redirect the standard error stream of the job to a
remote file.

• gridTransfer (8.8.15) is used to transfer a file from one host to another. The
accepted attributes are:

srchost : The source host. Uselocalhostfor the local machine.

srcdir : The source directory where the file can be found.

srcfile : The name of the file that is to be transfered.

desthost : The destination host. Can also belocalhostfor the local machine.
2 attributes followed by an asterisk are optional

66

destdir : The directory on the destination host where the file will be placed.

destfile* : Can be used to rename the file during the transfer.

• It may sometimes be necessary to execute a set of tasks on the same host.
TheallocateHost(8.8.1) element can be used for this purpose. Thenameat-
tribute specifies a variable that can be used inside the element by the various
tasks whenever the remote host needs to be referenced. A simple example is
provided below:

<a l l o c a t e H o s t name=” remote”>
<!−− t r a n s f e r t h e i n p u t d a t a −−>
<g r i d T r a n s f e r

s r c h o s t =” l o c a l h o s t”
s r c d i r =” / tmp”
s r c f i l e =” i n ”
d e s t h o s t =” { remote} ”
d e s t d i r =” / tmp” />

<!−− do t h e heavy p r o c e s s i n g −−>
<g r i d E x e c u t e

h o s t =” { remote} ”
e x e c u t a b l e =” / u s r / b in / t a c”
a r g s =” ”
s t d i n =” / tmp/ i n ”
s t d o u t =” / tmp/ ou t” />

<!−− t r a n s f e r back t h e r e s u l t s −−>
<g r i d T r a n s f e r

s r c h o s t =” { remote} ”
s r c d i r =” / tmp”
s r c f i l e =” ou t”
d e s t h o s t =” l o c a l h o s t”
d e s t d i r =” / tmp” />

< / a l l o c a t e H o s t>

Configuration Elements

The configuration elements are used to configure the scheduler and the handlers.
Following is a list of grid-related configuration elements:

• scheduler(8.8.25) is used to select a scheduler type and specify various pa-
rameters for it. Currently only one scheduler is available (nameddefault).
The attributes are:

type : The type of the scheduler desired. Onlydefaultis available at this time.

jobsPerCpu : Sets the maximum number of tasks that the scheduler will allocate for
one CPU.

maxSimultaneousJobs :Sets the total maximum number of remote tasks that the scheduler will
allow at any given time.

showTaskList : If set to true the scheduler will pop-up a window providing a lists of
tasks that are being executed, and additional task and memory statis-
tics.

67

• scheduler>taskHandler (8.8.29) selects the type of Java CoG Kit Core task
handler that is going to be used by the scheduler. The attributes aretype,
which selects the type of the handler (for a list of supported handlers, con-
sult the Supported Handlers Section8.4), andversion, which is used by the
scheduler to select the appropriate grid resources by matching it with thever-
sionattribute in thescheduler>grid>host>service(8.8.28) elements. Mul-
tiple handlers can be specified. In this case, all of them will be used, the
highest priority going to the one listed first.

• scheduler>taskHandler>securityContext (8.8.30) is used to define a secu-
rity context (passwords, private/public keys, proxy location, etc.) for the
task handler. The mandatory attribute is thenameattribute. A series of
sub-elements can exist for thescheduler>taskHandler>securityContext
(8.8.30) element. These sub-elements are handler specific and are described
in Section8.4.

8.3.6 Explicit Error Handling

In certain cases, errors that appear in certain locations, are known to have no impact
on the overall execution of a workflow. A typical example would be a cleanup
process. In such cases, it may be preferable to be able to simply ignore errors.
Other operations have particularly high rates of failure. However, subsequent re-
executions of such operations may result in a successful result. The following
elements deal with such cases:

• ignoreErrors (8.8.16) has no attributes and any errors that occur on contained
elements are ignored.

• restartOnError (8.8.24) has a numeric mandatory attribute (times) that spec-
ifies the number of times the contained sub-workflow is restarted when an
error occurs, before that error is reported.

• generateError (8.8.13) will cause an error to be generated, with an associated
message specified by themessageattribute.

8.3.7 Miscellaneous Elements

• project (8.8.23) is the main container of a workflow. Any workflow specifi-
cation that can be executed by Karajan must haveproject (8.8.23) as the root
element.

• echo (8.8.4) echoes a message on the console. The message can either be
specified using themessageattribute, or by inlining the text inside theecho
(8.8.4) element.

• include (8.8.17) can be used to include re-usable parts of workflows inside a
workflow specification. Theinclude (8.8.17) element has no function for the
workflow. It acts during the parsing process, and before the actual execution
begins. Thefile attribute specifies a file, relative to the main specification
file, that will be substituted for theinclude (8.8.17) element. The included
file will have its root element ignored. Section8.5provides details about the
include search path.

• executeJava(8.8.6) will synchronously execute a Java program. Themain-
Classattribute can be used to specify the fully qualified class name that

68

contains the main method. The class must be present in the classpath of the
instance of the Java Virtual Machine that is executing the workflow.

• javaBean (8.8.19) can be used to set properties and invoke methods on a
JavaBean. The fully qualified class name of the JavaBean must be specified
using theclassNameattribute. The following sub-elements are available
inside ajavaBean(8.8.19) element:

– javaBean>setProperty (8.8.21) will set a property on an instance of a
JavaBean. Thenameattribute indicates the name of the property that is
to be set. Karajan will then look for a setter method corresponding to
the given name. Thetypeattribute specifies the class type of the value.
The supported types areString, Integer, Float, Double, andBoolean.
The value for the property is given by thevalueattribute.

– javaBean>invokeVoid (8.8.20) invokes a method on the JavaBean which
has no arguments. The name of the method is given by themethod-
Nameattribute.

• wait (8.8.36) produces a delay in the execution. One of thedelay or until
attributes must be set. Thedelayattribute indicates wait period in millisec-
onds, while theuntil attribute specifies an absolute date in a format accepted
by thejava.util.Date class.

8.3.8 Functions

Relatively few functions are defined in Karajan. We hope to provide a more com-
plete set in the future. All functions put their return value in the default return
variable ($). The defined functions are:

• function:contains (8.8.9) determines whether a file contains a specific se-
quence of characters. Thefile attribute points to the file to be checked, while
thevalueattribute specifies the value to be searched.

• function:numberFormat (8.8.10) allows the formatting of a decimal number.
Thepatternattribute indicates the patter to be used for formatting (as used
by the java.text.DecimalFormat class). Thevalueattribute holds
the decimal value that is to be formatted.

• function:readFile (8.8.11) reads the contents of a file, pointed to by thename
attribute. This is intended for short text files that may possibly hold things
like error messages or exit codes. The file is completely read into memory,
therefore this function would not be suitable for manipulation of large files.

• function:UID (8.8.12) generates a unique ID3.

8.4 Supported Handlers

Karajan supports any handler that the Java CoG Kit Core supports. However, some
handlers may require particular security settings, which must be known, or the han-
dler will not work. Karajan can pass such settings to Core, using generic attributes.
The following are default Core handlers, together with examples that show their
usage in Karajan.

3 This function is not thread-safe at the moment of this writing, but plans are to correct the problem

69

GT2 : This handler does not require any specific settings, but the Java CoG Kit
must be configured properly for the handler to work.

<!−− d e f i n e t h e t a s k h a n d l e r t o be used −−>
<t a s k H a n d l e r t ype =” GT2” v e r s i o n=” gt2 −2.4.0”>

<!−− a s s o c i a t e w i th t h e p r e v i o u s l y d e f i n e d −−>
<!−− s e c u r i t y c o n t e x t −−>
<s e c u r i t y C o n t e x t name=” g t2” />

< / t a s k H a n d l e r>

<!−− d e f i n e a s m a l l g r i d −−>
<g r i d name=” d e f a u l t”>

<h o s t name=” co ld . mcs. a n l . gov” cpus=” 2”>
<s e r v i c e

v e r s i o n=” gt2 −2.4.0”
t ype =” job−submiss ion”
u r l =” { h o s t} :2119/ jobmanager−f o r k ” />

<s e r v i c e
v e r s i o n=” gt2 −2.4.0”
t ype =” f i l e − t r a n s f e r”
u r l =” g s i f t p : / / { h o s t} :2811” />

< / h o s t>
< / g r i d>

GT3 : Similar to the GT2 handler, the GT3 handler does not require any special
parameters. The following example shows how the GT3 handler can be
used in Karajan:

<!−− d e f i n e t h e t a s k h a n d l e r t o be used −−>
<t a s k H a n d l e r t ype =” GT3” v e r s i o n=” gt3 −3.0.2”>

<!−− a s s o c i a t e w i th t h e p r e v i o u s l y d e f i n e d −−>
<!−− s e c u r i t y c o n t e x t −−>
<s e c u r i t y C o n t e x t name=” g t3” />

< / t a s k H a n d l e r>

<!−− d e f i n e a s m a l l g r i d −−>
<g r i d name=” d e f a u l t”>

<h o s t name=” mi ld . mcs. a n l . gov” cpus=” 2”>
<s e r v i c e

v e r s i o n=” gt3 −3.0.2”
t ype =” job−submiss ion”
u r l =” h t t p : / / { h o s t} :8080/ ogsa/ s e r v i c e s/ base/
gram/ Mas te rFo rkManagedJobFac to ryServ i ce” />

<s e r v i c e
v e r s i o n=” gt3 −3.0.2”
t ype =” f i l e − t r a n s f e r”
u r l =” h t t p : / / { h o s t} :8080/ ogsa/ s e r v i c e s/ base/
m u l t i r f t / M u l t i F i l e R F T F a c t o r y S e r v i c e” />

< / h o s t>
< / g r i d>

70

SSH : The SSH handler requires explicit pointers to the credentials used for authen-
tication. It supports both username/password (which we do not recommend)
and public key authentication. The following example shows how to use an
SSH Core handler with Karajan:

<!−− d e f i n e t h e t a s k h a n d l e r t o be used −−>
<t a s k H a n d l e r t ype =” SSH” v e r s i o n=” ssh”>

<!−− a s s o c i a t e w i th t h e p r e v i o u s l y d e f i n e d −−>
<!−− s e c u r i t y c o n t e x t −−>
<s e c u r i t y C o n t e x name=” ssh−doe”>

<p r o p e r t y
name=” ssh−username”
v a l u e =” johndoe” />

<p r o p e r t y
name=” ssh−p r i v a t e−key”
v a l u e =” / home/ johndoe/ . ssh/ i d e n t i t y ” />

<p r o p e r t y
name=” ssh−pass−p h r a s e”
v a l u e =” guessme” />

<!−− ” ssh−password” cou ld a l s o be used i n s t e a d of−−>
<!−− t h e ssh−p r i v a t e−key / ssh−pass−p h r a s e p a i r −−>
< / s e c u r i t y C o n t e x t>

< / t a s k H a n d l e r>

<!−− d e f i n e a s m a l l g r i d −−>
<g r i d name=” d e f a u l t”>

<h o s t name=” ho t . mcs. a n l . gov” cpus=” 2”>
<s e r v i c e

v e r s i o n=” ssh”
t ype =” job−submiss ion”
u r l =” { h o s t} : 22” />

<s e r v i c e
v e r s i o n=” ssh”
t ype =” f i l e − t r a n s f e r”
u r l =” { h o s t} : 22” />

< / h o s t>
< / g r i d>

8.5 Include Search Path

When theinclude (8.8.17) element is used, the specified file is first searched in the
directory where the main workflow file is located. If the requested file is not found,
the include search path is iterated until the file is found. The include search path is
defined inetc/karajan.properties. The list of directories is separated by colons. A
special token,@classpath, indicates Karajan should try to find the file in the JVM
class path.

8.5.1 System Defaults

By default, Karajan starts with a very bare set of elements defined. In order to
access most of the above elements, you should include thesysdefaults.xmlfile in
the beginning of your workflow:

71

<p r o j e c t name=” myp ro jec t”>
< i n c l u d e f i l e =” s y s d e f a u l t s. xml ” />
. . .

< / p r o j e c t>

8.6 Architecture

This section explains the main architectural characteristics of Karajan.

8.6.1 The Loading Process

Karajan workflows are specified using an XML syntax. Only basic structural and
syntactic validation is being performed at load time. Semantic validation is per-
formed individually at execution time by each execution element.

A one-to-one mapping of the XML document elements and flow elements is done
using an element map which provides the correspondence between XML element
names and fully qualified flow element class names. An exception applies to the
include (8.8.17) element, which immediately after being loaded instructs the loader
to parse the included file, the contents of which is in-lined in the current element
tree.

8.6.2 The execution model

There are two important notions to remember in Karajan. One is the execution
element (or flow element), which (as outlined in the previous subsection) is con-
structed from XML elements in the specification. The second one is the event.
Events are used either to notify elements about the status of the execution of other
elements, or to instruct elements to perform certain actions (such as start or restart
execution). Events also encapsulate the state of the workflow through a variable
stack. The stack contains the complete run-time state of the workflow for a specific
thread of execution. There should be no deterministic difference in the execution
of two different instances of the same type of element, with the same attribute
values, that receive equivalent events (with identical states).

Elements are static for the workflow. Their internal state may change during the
execution of the workflow, but the workflow state must not be influenced by the
internal state of the elements. They react to events and can use the stack passed
through the events to manipulate the state of the workflow. Each element that
is being executed can add a frame to the variable stack. The frame can be used
to store variables that can represent the state of the element. These variables are
also accessible to contained elements. When the execution of an element ends, it
destroys the frame that it created, and together with it the variables that it contained.
This behavior is not enforced, but it is recommended.

In the case of parallel containers, each parallel thread will start with a copy of the
stack. The stack copies will internally share frames that are not write accessible to
the threads. A diagram detailing the stack model can be seen in Figure8.7. The
conventional representationpop - (a b – a)for a stack indicates thata andb were
present on the stack before the execution ofpop, and onlya was left afterwards.

72

Figure 8.7: The Stack Model

The above may in some cases be insufficient. Certain variables need to be made
accessible to the parent frames such that they can be used by subsequent elements
that are not descendants of the element which defined those variables. This is still
only possible in a sequential context. There is no way to propagate information
from one thread to the other. While this characterizes the workflow execution,
the applications themselves can still use inter-thread or inter-process communica-
tion/messaging as needed.

A distinction exists between Karajan threads and Java or OS threads. The Kara-
jan threads differ between each other only by the variable stacks they receive. No
assumption can be made about the Java or OS thread in which a Karajan thread
executes. The events that are passed between elements are managed by an event
dispatcher (which may use more than one Java thread). The appearance of paral-
lelism is achieved through the fact that elements either take a short time to execute
or they make use of their own Java threads if known to take a longer time to exe-
cute. The result is the ability to execute a large number of Karajan threads, without
the overhead required by Java/OS threads. As an example, each Java thread re-
quires a minimum of 96 Kilobytes of memory just for the thread stack.

Karajan defines six event types:

START : tells an element it should start execution.

RESTART : tells an element which has not completed execution yet, that it should restart
its execution.

73

EXECUTION STARTED : sent by an element immediately after it has started execution.

EXECUTION COMPLETED : sent by an element after it completes execution. This event is sent as a result
of receiving the END element and after cleanup is done.

EXECUTION FAILED : generated by an element when the execution failed. The frame created by
the element should be popped from the stack before the event is sent.

EXECUTION RESTARTED : generated after receiving a restart event.

An example of the execution model for both a sequential and a parallel container
can be seen in Figure8.8, and Figure8.9respectively.4

Figure 8.8: Execution of Sequential Elements

Figure 8.9: Execution of Parallel Elements

8.6.3 Task Scheduling

Task scheduling on grid resources is done using a scheduler that in turn uses the
Java CoG Kit Core Grid abstraction layer. ThegridExecute (8.8.14) and grid-

4 For space and readability considerations, the EXECUTIONCOMPLETED event type was shortened
to COMPLETED in the images

74

Transfer (8.8.15) elements submit the requests for execution to the scheduler which
enqueues these requests and executes them as resources become available. It is
up the the scheduler to manage both local and remote resources in order to en-
sure that these resources are not overloaded. However, certain parameters can be
passed to the scheduler (using thescheduler(8.8.25) element) that can alter the way
in which the resources are allocated from the defined pool (thescheduler>grid
(8.8.26) element). It is also the duty of the scheduler to choose the proper handlers
and services for a given task.

Tasks may or may not have certain constraints associated with them. Some tasks
may have pre-defined resources or handlers that they require. For example a cer-
tain job submission may have a predefined resource that it needs to run on. In
such a case, the scheduler should not attempt to find another resource for the task.
However, when a task does not specify such constraints, the scheduler must fill the
missing parts required to execute the task. The scheduler must also take care of
task encapsulation. This refers to the case when certain tasks must be executed on
the same resource.

When trying to submit a task, the default scheduler cycles through the list of avail-
able resources and uses the first one that it finds suitable for the given task. The
resource search for the next task begins with the resource immediately following
the last used resource in the list. If the end of the list is reached, the search con-
tinues from the beginning of the list. If after one complete cycle through all the
elements in the list, nothing suitable is found, the execution is postponed for a later
time, when some of the resources may become free.

The scheduler does not take care of dependencies between tasks or the order of
the execution of tasks. It is up to the workflow engine to do so. For the default
scheduler, once a set of tasks is queued in the scheduler, there is no way to know
anything about the order in which the execution of these tasks will begin, nor about
the order in which they will complete their execution. Of course, other schedulers
for which such things are known can be written, but the scheduler interface does
not define explicit ways for enforcing execution order, nor it is required by the
workflow engine from the scheduler that such order be known or be specifiable.

8.7 Checkpointing

Checkpointing is still an experimental feature in Karajan. This Section describes
the basic workings of checkpointing in Karajan. Checkpointing parameters can
be adjusted using thecheckpoint (8.8.2) element. Checkpointing here refers to
workflow checkpointing. Only the state of the workflow is saved in a checkpoint.
The application state is not included in the checkpoint. Imagine the following
scenario (in chronological order): a workflow creates certain files on a remote
resource, the workflow is checkpointed and interrupted, then the files are deleted,
and the workflow is restored from the checkpoint. If the files are further needed
and referenced in the workflow, an error will eventually occur.

8.7.1 Checkpoint Creation

Checkpointing works by dumping the workflow definition and workflow state to
a file. The workflow definition consists of the element tree, and is similar to the
workflow source after all theinclude (8.8.17) elements have been processed. The
state of the workflow is composed of two main areas: The set of events that are

75

waiting to be delivered, and the state of elements that have begun execution but
have not yet completed it.

When a checkpoint is requested, the checkpoint manager first locks the event dis-
patcher in order to guarantee that the state of the workflow remains consistent
during the checkpointing process. While the event dispatcher is locked, it does not
deliver events, nor it accepts new events. Threads that are trying to post events
to the dispatcher are suspended during this time. The event dispatcher also keeps
track of elements that have been started but were not completed and also keeps a
reference to the stack of those elements. Since the event dispatcher does not make a
full copy of the element stack (for performance considerations), it may sometimes
be the case that an element can at specific moments modify the stack and leave it in
an inconsistent state. A special locking mechanism that allows an element to group
operations on the stack that should be atomic is provided. The checkpoint manager
will therefore wait until all elements have completed the execution of blocks that
need to be atomic relative to the stack, before making the actual checkpoint. It can
be easily seen that posting an event to the dispatcher inside a atomic block could
cause a deadlock. It is thus prohibited to do so.

After all the checkpoint manager has ensured that the overall state of the workflow
is in a consistent state, it begins writing the specification, events and list of cur-
rently executing elements to the checkpoint file. Each event and running element
has an associated stack, which will also be serialized. It is mandatory that all ele-
ments put only Java Beans on the stack, otherwise variables on the stack will not
be saved, leading to an incomplete checkpoint.

8.7.2 Restoring from a Checkpoint

When invoked with a checkpoint file from the command line, Karajan will auto-
matically detect the checkpoint and restore the state of the workflow at the time the
checkpoint was taken. A checkpoint file is self contained, and does not require the
original workflow description.

The restoration process is done by first loading the workflow specification from
the checkpoint file. Afterwards, pending events are deserialized and posted to the
event dispatcher. Elements that were executing at the time the checkpoint was
taken are also sent a RESTART event using the associated stack that was saved
during checkpointing. This will effectively put the workflow in the state it was at
the time the checkpointing was done.

76

8.8 Quick Element Reference

8.8.1 allocateHost

Defines a token that can be used to guarantee that a set of tasks will be executed
on the same resource.

Attributes:

name: The name of the variable that should be set with the value of the token.
The token can then be used by thegridExecute (8.8.14) andgridTransfer (8.8.15)

elements as a host attribute.

8.8.2 checkpoint

Sets checkpointing parameters or forces the immediate creation of a checkpoint.

Attributes:

fileName: The name of the file to which the checkpoint will be written.

interval: Sets the interval at which regular checkpoints will be performed. The
interval is specified in seconds.

now: If set to true causes the immediate creation of a checkpoint. This is merely
a debugging feature. The recommended method is to set a regular interval for
checkpointing.

8.8.3 default

Typically used to define the default value for an argument in a template. It sets the
value of the specified variable if it is not already defined.

Attributes:

name: The name of the variable to be defined

value: The value of the variable

8.8.4 echo

Echoes a message on the console

Attributes:

message: The message to be echoed

<inline text>: Can be used instead of themessageattribute for larger chunks of
text

8.8.5 elementDef

Defines a new workflow element

Attributes:

className: The fully qualified Java class name of the element

nodeType: The XML element name to be defined

77

8.8.6 executeJava

Executes a Java application in a separate thread. The element completes execution
when the application completes execution.

Attributes:

mainClass: The fully qualified name of the class that contains the main method.

8.8.7 for

Iterates across a range of integer values

Attributes:

from: Used in conjunction with theto attribute indicates the first value of the
iteration

name: The name of the variable that is set with the current iteration value

parallel: If set to true the iterations will be executed in parallel, otherwise they
will be executed sequentially

range: A range of the formn, mdescribing all integers betweennandm(inclusive)

to: Used together with thefromattribute, indicates the last value of the iteration

8.8.8 foreach

Iterates across a sequence of discrete values

Attributes:

dir: Points to a directory. The iteration will be performed using the files in the
specified directory.

in: A comma separated list of strings that will be used as iteration values

parallel: If set to true the iterations will be executed in parallel, otherwise they
will be executed sequentially

8.8.9 function:contains

Tests if a file contains a certain text.

Attributes:

file: The file to be searched

value: The value to be searched

8.8.10 function:numberFormat

Formats a number according to the specified pattern.

Attributes:

pattern: The pattern according to which the number is formatted. The pattern has
the syntax used byjava.text.DecimalFormat

value: The value to be formatted

78

See also:http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

8.8.11 function:readFile

Reads a file and stores the contents into a variable. This function is intended for
small files.

Attributes:

file: The file to be read

8.8.12 function:UID

Generates a unique numeric ID

8.8.13 generateError

Causes an error to be generated

Attributes:

message: Sets the message associated with the error

8.8.14 gridExecute

Executes a job on the grid.

Attributes:

args: The arguments to be passed to the executable

directory: The directory on the remote resource to execute the job in

executable: A path to an executable on the remote resource

host: A resource on which the job will be executed. If left empty, the scheduler
will choose a resource. If a resource token (seeallocateHost(8.8.1)) is used, the
job will be executed on the resource that the token resolves to.

stderr: A path to a file on the remote resource to which the standard error stream
of the executable is to be redirected

stdin: A path to a file on the remote resource that will be redirected to the standard
input of the executable

stdout: A path to a file on the remote resource that will be used to redirect the
standard output stream of the job.

8.8.15 gridTransfer

Used to transfer a file on the grid

Attributes:

destdir: The destination directory

destfile: The name of the destination file

desthost: The destination resource

srcdir: The source directory

79

srcfile: The source file

srchost: The source resource

8.8.16 ignoreErrors

Causes any errors generated by contained elements to be ignored

8.8.17 include

Parses the contents of a file inserting the elements after the position of theinclude
(8.8.17) element.

Attributes:

file: The file to be included

8.8.18 nonCheckpointable

Has no functional purpose. It is generated inside serialized versions of events in
the locations where non checkpointable elements are found. An example of such
an element isinclude (8.8.17) which serves its purpose during the parsing process
and has no further function afterwards.

8.8.19 javaBean

Allows instantiation and manipulation of Java Beans.

Attributes:

className: The fully qualified name of the bean class

See also:javaBean>setProperty (8.8.21) , javaBean>invokeVoid (8.8.20)

8.8.20 javaBean>invokeVoid

Invokes a method on the Java Bean that takes no arguments.

Attributes:

methodName: The name of the method to be invoked

See also:javaBean(8.8.19)

8.8.21 javaBean>setProperty

Sets a property on the Java Bean. It tries to do so by invoking the setter method for
the property.

Attributes:

name: The name of the property to set

type: The type of the property to set. Supported types are: String, Integer, Float,
Double, and Boolean

value: The value to set

See also:javaBean(8.8.19)

80

8.8.22 parallel

Executes the contained elements in parallel

8.8.23 project

The root container of a main workflow file.

Attributes:

name: The name of the project

8.8.24 restartOnError

Restarts the execution of the contained elements if an error is generated

Attributes:

times: Indicates the maximum number of times the contained elements should be
restarted in case of an error before the error is reported.

8.8.25 scheduler

Specifies the type and parameters for the scheduler that is going to be used to
schedule grid tasks.

Attributes:

type: Indicates the type of the scheduler. Details about available schedulers can
be found in Subsection??

<varies>: Attributes to be passed to the scheduler.

8.8.26 scheduler>grid

Encapsulates a collection of grid resources that are used by the scheduler to sched-
ule tasks.

8.8.27 scheduler>grid>host

Describes one resource in the grid definition

Attributes:

cpus: The number of CPUs that the resource has

name: The host name of the resource

8.8.28 scheduler>grid>host>service

Defines a service for a resource

Attributes:

type: The type of the service. Currently the accepted values arejob-submission
andfile-transfer.

url: A URL indicating the location of the service.

81

version: A version label that is matched against the version labels of the defined
task handler(s).

8.8.29 scheduler>taskHandler

Defines a task handler that can be used by the scheduler to execute tasks.

Attributes:

type: The type of the handler. Valid types are described in Section8.4

version: A label used to matchscheduler>grid>host>service(8.8.28) definitions
against handlers

8.8.30 scheduler>taskHandler>securityContext

Used as a sub-element ofscheduler>taskHandler (8.8.29) to define a security con-
text for the handler.

Attributes:

type: Indicates the type of the security context. For details consult Section8.4

8.8.31 scheduler>taskHandler>securityContext>property

Defines a property for a security context.

Attributes:

name: The name of the property

value: The value of the property

8.8.32 sequential

Executes the contained elements in sequential order

8.8.33 setvar

Sets the value of a variable

Attributes:

name: The name of the variable

value: The value of the variable

8.8.34 template

Invoked a template that was previously defined usingtemplateDef(8.8.35)

Attributes:

name: The name of the template to be invoked

<varies>: Arguments to be passed to the template

82

8.8.35 templateDef

Defines a template

Attributes:

name: The name of the template to be defined

8.8.36 wait

Delays the execution for a period of time or until a specific time

Attributes:

delay: The delay in milliseconds to wait

until: A string representing a date. The format of the date is any format accepted
by thejava.util.Date class

See also:http://java.sun.com/j2se/1.4.2/docs/api/java/util/Date.html

83

9 Graph Editor

In order to compile the editor, execute ’ant dist’ in the grapheditor directory. A
new directory named ’dist’ will be created. The ’dist’ directory will contain the
following subdirectories: bin - contains the launchers used to start programs from
the command line. etc - contains configuration files (none at the moment) lib
- contains the jar files needed to run the viewer/editor examples - a few graph
examples and a perl client that can interact with the viewer service

9.1 Configuring

The ’dist/etc’ directory contains thegrapheditor.propertiesfile, which can be used
to customize certain aspects of the editor.

9.2 Running

To run the editor, cd to the ’dist/bin’ directory and execute ’./grapheditor’ (or
grapheditor.bat on windows)

The following command line options can be used:

-s<port> : Starts the editor in server mode, listening for incoming connections on the
specified port. If no port is specified, the default (9999) will be used.

-h | -help : Displays a list of options together with brief explanations.

-l | -load<file> : Loads<file> after starting up.

-t | -target<target> : Starts on the specified rendering target. The following targets exists as of the
writing of this manual:

swing9.3.1: Uses the Java Swing graphical interface. It is currently the only target
that supports interactive editing.

html 9.3.2: Produces a HTML file together with any necessary images.

postscript9.3.3: Renders the graph in an Encapsulated PostScript file.

remote9.3.4: Can be used to forward the display of a graph to a remote viewer. The
API can be used as if working with local rendering, and the remote
renderers will take care of forwarding the events to the remote viewer.
It is unlikely that this target would be of any use when invoking the
graph editor from the command line.

Additional options can be specified in theetc/grapheditor.properties
file. These options are generally particular to every target, and thus explained in
the target descriptions subsections.

9.3 Using The Graph Editor

This section will describe how each target of the graph editor can be used.

84

9.3.1 The Swing Target

When started in the Swing (default) target, an empty frame (shown in Figure9.3)
is displayed. The three essential elements that can be identified are:

The Menu Bar : can be used for various operations like loading and saving of graphs. The
menus are dynamic, which means that depending on certain factors (i.e. the
selected view), their structure can change. TheView menu can be used to
select the active view. A snapshot showing the list of available views is
shown in Figure9.1

Figure 9.1: The Available Views

The graph view also supports a number of layout algorithms. These al-
gorithms can be seen in theView¿Layoutsmenu, when the Graph View is
selected (see Figure??).

Figure 9.2: Layout Algorithms

The Tool Bar : contains icons representing various components that can be created in a
graph canvas. The icons may not be present if the selected view does not
support editing.

The View Display : is the main panel where each view renders graphs.

85

Figure 9.3: An Empty Graph Editor Window

When a graph is loaded or created, each component can have a set of options/ac-
tions accessible through a context menu. A snapshot of such a menu can be seen
in Figure9.4.

9.3.2 The HTML Target

The HTML target is used to render an HTML file that displays a graph. In order
to be able to properly display a generated HTML graph, your browser will need
to support JavaScript, and transparent PNG images. The HTML target has been
tested with Mozilla 1.4 and up.

The output is optimized to produce a relatively small amount of data. For each
distinct node icon, a separate image will be generated, but identical icons will
not result in multiple images. There is also a certain amount of optimization in-
volved in the generation of edges (arrows). An exponential scale is used to snap
the dimensions of the generated arrow images, such that arrows having dimensions
which differ by a small percentual ratio, will be represented by the same image.
However this image will be further scaled by the JavaScript code in the html file
as needed. This may result in aliasing and distortion of the rendered page, but it is
a required compromise.

The available options for theHTML target are:

html.outputdir : The output directory where the html source and images will be generated.

html.graphview.layoutengine : Specifies the layout engine to be used when rendering a graph. The value
is a fully qualifies Java class name. The predefined layout engines that the
graph editor provides are located in the
org.globus.cog.gui.grapheditor.canvas.views.layouts
package. Available layout class names are:

ExtendedSpringLayout : A spring layout that does some initial heuristic layouting to reduce the
overall layouting time. This layout will also skip the springing part for

86

Figure 9.4: The Node Context Menu

large graphs (since the spring layout isO(n2)).

LevelLayout : An O(n) algorithm which places vertices on vertical levels using the
edges as a factor of decision. Generally, if vertexa has an outgoing
edge to vertexb, the later will be placed on a level below the former.

RadialLayout : AnotherO(n) algorithm which tries to distribute edges for a vertex in
such a way that the angles between consecutive edges will be the same.

NonOverlappingRadialLayout : This algorithm is a variation of theLevelLayout , with the dis-
tinction that instead of levels, the vertices are placed on concentric
circles. While it tries not to overlap edges, it does not always succeed.

Flow Layout : O(n) algorithm suitable for flow networks. It associates bounding
boxes to vertices and, traversing the graph, resizes those bounding
boxed according to the sizes of the bounding boxes of connected ver-
tices.

9.3.3 The PostScript Target

Renders the graph in Encapsulated PostScript format.

Available options are:

postscript.outputdir : The directory where the output file will be placed.

postscript.outputfile : The name of the file that the output will be written to.

postscript.graphview.layoutengine :The layout engine used to render the graph. Accepts the same values as
html.graphview.layoutengine9.3.2

87

9.3.4 The Remote Target

Forwards API calls to a remote graph editor service.

Available options are:

remote.contact : A host:portpair that represents the location of the graph editor service that
the target will try to connect to.

9.4 Graph file format

The graphs are stored in a simple XML format. The simplest graph can be specified
as follows:

<graph>
< / g raph>

Adding nodes can be done using the ¡node¿ element:

<graph>
<node node id =” 1” name=” t h e f i r s t node” />
<node node id =” 2” name=” t h e second node” />

< / g raph>

Edges can be added using the ’nodeid’s as references:

<graph>
<node node id =” 1” name=” t h e f i r s t node” />
<node node id =” 2” name=” t h e second node” />
<edge from=” 1” t o =” 2” />

< / g raph>

Hierarchical graphs can be created too. In such graphs, each node can itself contain
other graphs:

<graph>
<node node id =” 1” name=” t h e f i r s t node”>

<node node id =” sn1” name=” subnode 1 ” />
<node node id =” sn2” name=” subnode 2 ” />
<node node id =” sn3” name=” subnode 3 ” />
<edge from=” sn1” t o =” sn2” />
<edge from=” sn2” t o =” sn3” />
<edge from=” sn3” t o =” sn1” />

< / node>
<node node id =” 2” name=” t h e second node” />
<edge from=” 1” t o =” 2” />

< / g raph>

Properties are specified as XML attributes. There are a few predefined properties
that each node can have:

name : (String) appears as the text in the label used to render the node

iconfile : (String) an absolute path to an image that will appear as an icon for the
rendered node

88

overlayfile : (String) an absolute path to an image that will be overlayed on top of the
base icon.

hue : (Float) specifies an additive adjustment for the hue of the icon. Changing
this can shift the colors of the icon.

saturation : (Float) a multiplicative adjustment for the saturation of the colors in the icon.

value : (Float) a multiplicative adjustment for the value of the colors in the icon

status : (Integer) a value, ranging from 0 to 3 with the following meanings:

0 − s topped
1 − r unn ing
2 − f a i l e d
3 − comple ted

This will adjust the HSV color properties of the icon, and change the overlay,
to give a visual representation of a possible state of a task.

You can also add your own custom properties (which will show up in the properties
list for a node/edge):

<graph>
<node

node id =” 1”
name=” t h e f i r s t node”
i c o n f i l e =” / u s r / s h a r e/ i c o n s/ myicon. png” />

<node
node id =” 2”
name=” t h e second node”
myproper ty =” myvalue” />

<edge from=” 1” t o =” 2” />
< / g raph>

9.5 API

At the basis of the viewer/editor stands theorg.globus.cog.util.graph.Graph
class. For details, please consult the JavaDoc available at ??1.

The editor can render nodes and edges that correctly implement theorg.globus.cog.gui.grapheditor.nodes.NodeComponent
interface, respectively, theorg.globus.cog.gui.grapheditor.edges.EdgeComponent .
Generic implementations of the said interfaces are available atorg.globus.cog.gui.grapheditor.generic.GenericNode
andorg.globus.cog.gui.grapheditor.generic.GenericEdge .

Graphs are displayed in graph canvases, which in turn can have various views,
used to render the graphs in particular ways. Views can also have transformations,
used to algorithmically modify graphs, just before they are being displayed. These
transformations can also be chained.

The nodes can also contain canvases, which in turn can contain other graphs, in a
recursive manner. This allow for the effective use of hierarchical graph structures.

The following example shows how to build a simple graph and display it in a
window:
1 We need to have the JavaDoc of the CoG online

89

/ / c r e a t e t h e r o o t node
RootNode r o o t =new RootNode () ;

/ / c r e a t e a canvas f o r t h e r o o t node
GraphCanvas canvas = r o o t . c r e a t e C a n v a s () ;

/ / c r e a t e a graph s t r u c t u r e
Graph graph =new Graph () ;

/ / c r e a t e t h r e e node components
Gener icNode gener icNode1 =new Gener icNode () ;
Gener icNode gener icNode2 =new Gener icNode () ;
Gener icNode gener icNode3 =new Gener icNode () ;

/ / add t h e components t o t h e graph , and keep r e f e r e n c e s
/ / t o t h e node o b j e c t s
Node node1 = graph . addNode (gener icNode1) ;
Node node2 = graph . addNode (gener icNode2) ;
Node node3 = graph . addNode (gener icNode3) ;

/ / c r e a t e two edge components
Gener icEdge gener i cEdge1 =new Gener icEdge () ;
Gener icEdge gener i cEdge2 =new Gener icEdge () ;

/ / add t h e edge components t o t h e graph
/ / t h e f i r s t edge w i l l go from node1 t o node2,
/ / wh i l e t h e second one w i l l go from node1
/ / t o node3
graph . addEdge (node1 , node2 , gener i cEdge1) ;
g raph . addEdge (node1 , node3 , gener i cEdge2) ;

/ / t e l l t h e canvas what graph i t i s supposed t o d e a l
/ / w i th
canvas . se tGraph (graph) ;

/ / choose a view f o r t h e canvas
canvas . setV iew (new GraphView ()) ;

/ / c r e a t e a f rame t h a t d i s p l a y s e v e r y t h i n g
GraphFrame frame =new GraphFrame (roo t , f a l s e , 0) ;

/ / a c t i v a t e t h e f rame
frame . a c t i v a t e () ;

/ / s t a r t t h e main loop
f rame . run () ;

Node components and edge components (in short, graph components) can have
properties. These properties can be used to change the appearance or behavior of
the components. A list of meaningful properties for a GenericNode can be found
in Table9.4. ThenodeComponent.getPropertyValue(String name)
andnodeComponent.setPropertyValue(String name, Object value)
methods can be used to query/modify the value of a property programmatically.
The property changes will show immediate results on the screen. The example
below will change the icon used for a node, and desaturate it:

90

gener icNode1 . s e t P r o p e r t y V a l u e (” i c o n f i l e ” , ” / tmp/ myicon. png”) ;
gener icNode1 . s e t P r o p e r t y V a l u e (” s a t u r a t i o n” , new F l o a t (0 . 1)) ;

9.6 Scalability

When using the viewer with large graphs, please note that each element (node or
edge) will take a total of about 1.3KB of memory when fully rendered. This means
that a 50,000 node 150,000 edge graph will consume a total of about 300MB.

91

10 Portlet

Portals provide a secure, single point of interaction with diverse sources of infor-
mation, personalized to the users needs.

Portlets are user-facing web application components, that can be managed, and
personalized through a portal deployment.

The ’portlet’ module provides a repository for portal enabled client-side web-
clients: Portlets. A Grid Service Provider / Virtual Orginization (VO) can install
these portlets, within a VO Portal/portlet container, so that users within the VO can
Submit, View the status and output(s) of, and Administer their grid-tasks.

A brief description of portlets/remoteExecution: This portlet is the ’Grid Job
Submission Portlet’, and it allows users of the portal to submit Grid jobs. The
Jobs submitted can be batch jobs, or redirected ones, with redirection of Standard
Input, Standard Output and Standard Error. Once submitted, the ’User Task Set
Management Portlet’ can be used to manage the jobs.

A brief description of portlets/setManage: Common tasks supported by grid
envionments are Job Submission, File Transfer, and Information Retreival. This
portlet, the ’User Task Set Management Portlet’, allows the management of user
tasks, submitted to the User Task Set management service. The list of currently
submitted tasks, and their output/error/status be viewed, and managed.

A brief description of portlets/taskSetUpload: This portlet allows for upload
of a collection of, possibly unrelated, tasks as part of a Task Set, containing a
list of task description(s) in an xml form. Once submitted, the ’User Task Set
Management Portlet’ can be used to manage the task(s).

10.0.1 Deployment

The build/deployment mechanism within the portlet module is as described in the
README.txt in the cog home.

For ease of use and extensibility, the cog build model has been extended to the
development, build, and deployment of individual portlets. Portlets are created
and managed in the ’portlets’ directory, within the portal module.

Running ’ant -projecthelp’ in the concerned portlet/portlets/¡portlet-name¿ direc-
tory will show the supported ant targets, for that portlet.

A template portlet project is available in the ’portlets’ directory.

92

10.0.2 Directory structure of portlet module

The directory structure of the portlet module is defined as follows:

CHANGES.txt Changes to the module.
TODO.txt Todo’s for the module.
build.xml And targets to build the module.
dependencies.xml The dependencies of the module; currently

on core.
etc Jar manifest files.
launchers.xml No Launchers at the moment.
lib Jars to be shared amongst all the portlets.
portlet.xml Master build file for the portlets.
portlets Portlets repository directory.
portlets/<portlet-name>/build.xml Ant build script.
portlets/<portlet-name>/conf Jetspeed portlet registration files.
portlets/<portlet-name>/etc Jar manifest files and Log4J configuration

files.
portlets/<portlet-name>/lib The jar files needed by the portlet.
portlets/<portlet-
name>/project.properties

Portlet deployment properties. Have a look
at the file in template for more information.

portlets/<portlet-name>/src The portlet sources.
portlets/<portlet-name>/templates Velocity templates for the portlet.
project.properties Module properties.
src Common portlet sources.

10.0.3 Prerequisite - Jetspeed

1. Download and install a Java Development Kit.

To install and develop new portlets for Jetspeed, you have to first download
and install the JDK as documented in Section ... if you have not done this so
far. 1

2. Download and install the Apache Ant build scripting environment.

- This is required for both, building new portlets and, deploying the existing
and new portlets.

- Please use version 1.5 and above.

- You can find documentation at: http://ant.apache.org/manual/index.html

3. Download and install the Servlet Container that will host the Jetspeed Portal
web-application.

- This relsase has been tested on Jakarta-Tomcat 4.1.24.

- You can find documentation at: http://jakarta.apache.org/tomcat/tomcat-
4.1-doc/index.html

- A quick start procedure to get Jakarta-Tomcat 4.1.x installed is:

1) Download the jakarta-tomcat binary installation archive from: http://apache.get-
software.com/jakarta/tomcat-4/v4.1.29/bin/

1 GvL: please complete the apropiate section, this used to be here before: This release has been tested
on Sun JDK 1.4.1 and above.; You can find documentation at: http://java.sun.com/

93

2) Unzip the contents of the tarball into a chosen location.

3) Setup the port for the http connector in the server.xml file, usually found
at: <tomcat-install-dir>/conf/server.xml

4. Download and install the Apache Jetspeed portal implementation.

- This release has been tested on Jetspeed 1.4b3.

- You can find documentation at: http://jakarta.apache.org/jetspeed/site/install.html

- A quick start procedure is:

1) Download the jetspeed WAR file from: http://jakarta.apache.org/builds/jakarta-
jetspeed/release/v1.4b3/

2) Unzip its contents (the jetspeed.war file) into the ’webapps’ directory of
your chosen Servlet Container (compatible with either the Servlet 2.2, or 2.3
API specification).

3) Point your browser to your installation, to deploy the jetspeed webappli-
cation. This is usually: http://<ip>:<port>/jetspeed

10.0.4 Prerequisite - MyProxy

1. Download and install the My Proxy Manager portlet. This portlet is required
for retreiving proxy grid credentials, previously stored in a MyProxy creden-
tial repository.

- Currently we support the 2.0 version of the ’Proxy Manager’ portlet.

- You can get this portlet source from the Alliance Portal site, hosted at Ex-
treme! Computing Labs, at: http://www.extreme.indiana.edu/xportlets/project/release/
, in the package ’xportlets-proxymanager-2.0-src.tar.gz’. - A quick start pro-
cedure is:

1) Download the ’xportlets-proxymanager’ release archive file, and untar the
distribution into a temporary directory.

2) Copy the ’build.properties.template’ file, in the xportlets- -proxymanager,
to ’build.properties’, and edit the ’alliance.home’ ant property to point to the
jetspeed installation.

- For a jakarta-tomcat servlet container, this would be:<tomcat-install-
dir>/webapps/jetspeed/

3) Run the ’ant build’ and then the ’ant deploy’ command in the xportlets-
proxymanager directory. This will build and deploy the portlet into the jet-
speed installation.

10.0.5 Configuration

1. Please configure the Java CoG Kit, installation with the required certificates
and property files. More information in this regards can be found in the Java
CoG Kit manual, found here: http://www.globus.org/cog/manual-user.pdf

The following components need to be installed, on the portal deployment
machine: - Ensure that you have installed the appropriate Certification Au-
thority (CA) certificates.

94

- Ensure that you have your user-certificates installed.

- Ensure that the /.globus/cog.properties is properly configured.

- You need to have a valid proxy-certificate.

2. Please ensure that you set the following ant properties, in the ’project.properties’
file in the respective portlet directory.

a) ’jetspeed.home’: the complete path to the jetspeed web application in-
stallation. - For a jakarta-tomcat servlet container, this would be:<tomcat-
install-dir>/webapps/jetspeed/

b) ’servlet.lib.dir’: the complete path to where ’servlet.jar’ can be found. -
For jakarta-tomcat version(s) 3.3.x this jarfile can be found in, and thus the
property would be set to:<tomcat-install-dir>/lib/common/

- For jakarta-tomcat version(s) 4.x this jarfile can be found in, and thus the
property would be set to:<tomcat-install-dir>/common/lib/

- For other web-application containers please check their distributions for
this jar file.

10.0.6 Installation

1. Running the command ’ant dist’, in the directory: portlet/portlets/<portlet-
name>/ , will compile, build, and deploy the portlet into the jetspeed instal-
lation.

- The available portlets are:

1) the ’Grid Job Submission Portlet’

2) the ’User Task Set Management Portlet’, and

3) the ’TaskSet Upload Portlet’

- For further details on the build system of the portlets/ template, do have a
look at the README.txt in the cog home directory.

2. Use the jetspeed portlet listing/management interface, per user to add the
portlets to the users workspaces.

95

11 Java CoG Kit QoS Module

The QGS is the QoS an enhanced provider that is also available within the Grid
QoS Management framework (G-QoSM), and, currently, supports access to Grid
resources with QoS guarantees. Two resouce allocation strategies are supported;
a) time-domain, and b) resource-domain. Time-domain requests that is exclusive
access to computation resource of a Grid node, which entails the user to have
full access to the computer resource where the QGS service is installed, then the
user can submit job(s) to this particular resource through out the defined period
in the QoS agreement and no other users’ jobs share this computation resource.
Resource-domain request is request for computation resource in a shared mode,
therefore, the applicatioin/client must provide a specific computation capacity re-
quirment, e.g a percentage of the overallCPU capacity. Then the application/client
can submit jobs, during the specifed duration in the agreement, to the Grid node,
and jobs will be executed under the that specific CPU QoS constraints.

11.0.7 QGS Installation Prerequists

Make sure the following components are properlty installed and configured:

1. Globus toolkit 3.0 or later versions – full installation or the ’core’

2. Java CoG kit 1.1a or later versions is propery installed and configured

3. Dynamic Soft Realtime scheduler (DSRT), available with this distribution –
make sure you use the DSRT with this distribution as it has some customized
API

4. Edit the file ”config.txt” available in the root directory of this distribution,
with the DSRT installation path and save the file in the ’.globus/’ directory.

5. Java VM and apache ant installed.

11.0.8 QGS Compilation and service deployment

If you decided not to compile the QGS and generate jar and gar files, go to setep
(3) ,,,, and use the supplied gar and jar files available in the /qos/lib directory.

1. Edit the file ’build.properties’ in the installation root directory with the right
value of the ’ogsa.root’, which should be set to the ogsa installation.

2. From the installation directory, run the convinient script, created by the GT3
team, as shown below, to compile the QGS service and create the appropoe-
riate jar and gar files.

./compileService.sh org/globus/cog/qos/server/imple/Qos.java

If all goes well, then you should have a build directory with all the jar, gar
and the compiled classes.

96

3. Create a proxy, if you don’t have a valid one; one way to do this is from the
CoG dir/bin enter the following:

./visual-proxy-init

4. From the ogsa installation directory deploy the service by entering the fol-
lowing command:

ant deploy -Dgar.name=$QGSDIR/src/build/lib/org.globus.cog.qos.server.Qos.gar

where QGSDIR is the installation directory of this distribution

5. Sart the ogsi container by entering the follwoing command from the ogsa
directory:

ant startContainer

6. Create a presistant instance of the QGS by entering the following command
from the ¡ogsadir¿/bin:

ogsi-create-service http://localhost:8080/ogsa/services/org/globus/cog/qos/server/QosService
qos

this should be entered as one command.

7. To ensure that the service instance has been started, from the ogsadir enter
the following command:

ant gui

This command starts the ogsi visual brower.

You should see in the broweser: ’A QoS Service Factory’ and ’A QoS Ser-
vice Instance’ with both are in ’ACTIVE’ states

8. If all goes well, and you can see the service instance in the browser as ’AC-
TIVE’, then Congrantulation!! the QGS is deployed and instantiated cor-
rectly.

9. The QGS needs to know which gatekeeper to submit jobs to, therefore, we
suggest that you start a jglobus gatekeeper availble within the CoG installa-
tion directory and get its contact informatin. This can be done as follows:

./globus-personal-gatekeeper

this command will return a contact information. You you have a gram ser-
vice running, you can naturally you use it instead onf jglobus gatekeeper.

when the gram service contact inofrmation is obtained, run a launcher pro-
gram available in the /dist/bin as follows:

./qos-adminClient ¡QGS url¿ ¡Gram contact¿

10. Now you should be able to use the QoS service provides by the QGS. You
may start with exeuting some or the supplied examples or interact with the
QGS using the supplied GUI interface

11.0.9 Examples

There are a number of examples in the package org/globus/cog/qos/examples where
you can take a look at how the client can be accessed. The launchers of these ex-
amples are available in the /dist/bin directory.

97

You can also interact with the QGS service using our GUI client, which can be run
from the from the /dist/bin directory – the launcher script name is ./qos-guiClient

C:\cygwin\home\laszewsk\work\cog\modules\qos\dsrt\index.html

11.1 Resources

11.2 Common

11.3 All

98

12 Command Tools

99

13 grid-cert-request

The certificate management module is a set of tools that make it easier for users to
manage their certificates. For instance there are tools to generate a certificate re-
quest, store credential on MyProxy server, view local credential, renew certificates
and revoke certificates.

Administrators have to choice of deploying these tools as signed Java Applets
and/or as signed Java WebStart Applets.

The benefits of signed Java Applet are integration into web pages however they
required Java capable browsers. Java singed WebStart Applets do not have this
requirement. The WebStart mechanism also has the advantage of caching the jars
used by the applets. One disadvantage to the WebStart mechanism is that the
Applet will not integrate into web page.

Both of these deployment methods are appealing because they dont require any
installation of OGSA or CoG by the client. The deployment mechanism will install
the necessary jars to run the certificate management tools.

This module consists of .java files for the actual applets and of .jsp and .html pages
to launch the Java Applets and .jnlp files to launch the WebStart Applets. These
files contain parameters that can be changed by an administrator to change such
things as the Certificate Authority, MyProxy server location and background color
of the applet.

These applets need to be signed

(explain how this is done)

A user must trust the entity that signed the applets.

[warning.jpg]

At the moment the jce jar is not signed properly by Bouncy Castle. Once we use
the latest jar it will be ok but for the moment you will get this dialog. Simply press
the X not the abort button.

[jce.jar]

Once the user grants the applets security access it will start.

The first step a new grid user will have to do is get credentials. To do this you need
to generate a certificate request and have it signed by your certificate authority. Use
the CertReqApplet to do this:

[certreq.jpg]

(description of params goes here)

Once you get a response from your CA place it in your usercert.pem as described in
the email. You can now use the certificate info applet to see your local credentials.

[cerinfo.jpg]

100

Supposing you were going away on a business trip you may want to put some
temporary credential on a MyProxy server. See myproxy command line tool for
more details on what this means.

[myproxy.jpg]

(description of params goes here)

After a certain amount of time your credential will expire. Before this happens
your CA will send you a renewal notification with a challenge phrase. You can use
the certificate renew applet to generate your renewal request.

[certrenew_applet.jpg]

(description of params goes here)

If for some reason your credentials get compromised or you simply dont need them
anymore you may want to destroy your credentials and notify your CA that you did
so. The certificate revocation applet can be used to delete the certificate files and
notify your CA.

[certrevocation_appet.jpg]

(description of params goes here)

grid-cert-request [-help] [options ...]

SYNOPSIS.

grid-cert-request can create user, host, and LDAP server certificates. A certificate
request and private key will be created.You will be asked to enter a PEM pass
phrase. This pass phrase is akin to your account password, and is used to pro-
tect your key file. If you forget your pass phrase, you will need to obtain a new
certificate.

EXAMPLES.

grid-cert-request
- Creating a user certificate

grid-cert-request -host [my.host.fqdn]
- Creating a host or gatekeeper certifcate

grid-cert-request -service ldap -host [my.host.fqdn]
- Creating a LDAP server certificate

OPTION

-version : Display version
- , -h, -help, : Display usage

101

-usage
-cn <name>, : Common name of the user
-commonname <name>
-service <service> : Create certificate for a service. Requires

the -host option and implies that the generated
key will not be password protected (ie implies -nopw).

-host <FQDN> : Create certificate for a host named <FQDN>
-dir <dir_name> : Changes the directory the private key and certificate

request will be placed in. By default user
certificates are placed in /home/user/.globus, host
certificates are placed in /etc/grid-security and
service certificates are place in
/etc/grid-security/<service>.

-prefix <prefix> : Causes the generated files to be named
<prefix>cert.pem, <prefix>key.pem and
<prefix>cert_request.pem

-nopw, : Create certificate without a passwd
-nodes,
-nopassphrase,
-verbose : Don’t clear the screen <<Not used>>
-int[eractive] : Prompt user for each component of the DN

<<Not implemented yet>>
-force : Overwrites preexisting certifictes;

102

Bibliography

[1] G. von Laszewski and P. Wagstrom,Tools and Environments for Parallel and
Distributed Computing, ser. Series on Parallel and Distributed Computing.
Wiley, 2004, ch. Gestalt of the Grid, pp. 149–187. [Online]. Available:
http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski--gestalt.pdf8

[2] G. von Laszewski and K. Amin,Grid Middleware. Wiley, 2004, ch.
Middleware for Commnications, to be published. [Online]. Available:
http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski-gridmiddleware.pdf8

103

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-gridmiddleware.pdf

Index

Acknowledgments,13
Administrative Contact,13

Bugs,9

Contact,13

Karajan,55
Methods

allocateHost,67, 77, 79
checkpoint,75, 77
default,65, 77
echo,62, 68, 77
elementDef,77
executeJava,68, 78
for, 64, 78
foreach,64, 78
function:contains,69, 78
function:numberFormat,69, 78
function:readFile,69, 79
function:UID,69, 79
generateError,68, 79
gridExecute,66, 74, 77, 79
gridTransfer,66, 75, 77, 79
ignoreErrors,68, 80
include,68, 71, 72, 75, 80
javaBean,69, 80
javaBean>invokeVoid,69, 80
javaBean>setProperty,69, 80
nonCheckpointable,80
parallel,62, 64, 81
project,68, 81
restartOnError,68, 81
scheduler,67, 75, 81
scheduler>grid, 65, 75, 81
scheduler>grid>host,65, 81
scheduler>grid>host>service,65, 68, 81, 82
scheduler>taskHandler,68, 82
scheduler>taskHandler>securityContext,68, 82
scheduler>taskHandler>securityContext>property,

82
sequential,62, 82
setvar,60, 82
template,65, 82
templateDef,65, 82, 83
wait, 69, 83

License,14
bouncycastle,24
cryptix, 24
Globus Toolkit,16
GPTL,16
Java CoG Kit,20
JCoGPL,20
junit, 24
log4j, 24
puretls,24
soaprmi11,24
xerces,24
xml4j, 24

Mailing List, 10

Project Registration,14

Website,9
Workflow, 55

Karajan,55

104

	Title Page
	Preface
	Participation Opportunities
	Grids
	Intended Audience
	Resources
	Project Website
	Bug Reporting
	Mailing Lists
	Sourcecode Repository

	About the Manual
	Conventions

	Manual Maintainer
	Contributors
	Administrative Contact
	Acknowledgments

	License
	Project Registration
	Globus Toolkit
	Globus Toolkit Public License (GTPL)
	Globus Toolkit Contributor Liceense

	Java CoG Kit
	Java CoG Kit Public License (JCoGPL)
	Java CoG Kit Contributor Liceense

	Other Licences
	jglobus
	ogce
	Others

	GNU Public Licence

	Introduction
	Overview
	History
	Metacomputing
	CoG Kits

	Installation
	Download
	CVS Release Tags
	Prerequisites

	Downloading the Java CoG Kit
	Compiling the Java CoG Kit
	Compiling the complete distribution
	Compiling individual modules
	Using the Java CoG Kit
	Setup

	Contributing
	Creating a module
	Build files
	Libraries
	Source
	Using PMD
	Documenting the modules
	Maintaining a module
	Launchers
	Webstart

	Coding Guidelines for the Java CoG Kit
	Imports
	Indentation
	Brackets
	Variables
	Instance Variables

	One-Liners
	Logging
	Testing
	Internationalization
	Library Reuse
	Exceptions

	Modules
	util
	certrequest

	Core
	Introduction
	Installation
	Download
	Compile
	Configuration
	Examples

	Design
	ExecutableObject
	Task
	Specification
	TaskGraph
	Status
	Handlers

	Programmer's Guide
	Executing a remote job execution task
	Executing a third party file transfer task
	Executing a simple TaskGraph (DAG)
	Executing a hierarchical TaskGraph
	Writing a custom TaskHandler

	jglobus

	Karajan
	Installation
	Obtaining the Source Code
	Compiling Karajan

	Using Karajan
	Command Line Interface
	Graphical Interface

	Language Specification
	Concepts
	Parallelism
	Iterators
	Templates
	Grid-related Elements
	Explicit Error Handling
	Miscellaneous Elements
	Functions

	Supported Handlers
	Include Search Path
	System Defaults

	Architecture
	The Loading Process
	The execution model
	Task Scheduling

	Checkpointing
	Checkpoint Creation
	Restoring from a Checkpoint

	Quick Element Reference
	allocateHost
	checkpoint
	default
	echo
	elementDef
	executeJava
	for
	foreach
	function:contains
	function:numberFormat
	function:readFile
	function:UID
	generateError
	gridExecute
	gridTransfer
	ignoreErrors
	include
	nonCheckpointable
	javaBean
	javaBean>invokeVoid
	javaBean>setProperty
	parallel
	project
	restartOnError
	scheduler
	scheduler>grid
	scheduler>grid>host
	scheduler>grid>host>service
	scheduler>taskHandler
	scheduler>taskHandler>securityContext
	scheduler>taskHandler>securityContext>property
	sequential
	setvar
	template
	templateDef
	wait

	Graph Editor
	Configuring
	Running
	Using The Graph Editor
	The Swing Target
	The HTML Target
	The PostScript Target
	The Remote Target

	Graph file format
	API
	Scalability

	Portlet
	Deployment
	Directory structure of portlet module
	Prerequisite - Jetspeed
	Prerequisite - MyProxy
	Configuration
	Installation

	Java CoG Kit QoS Module
	QGS Installation Prerequists
	QGS Compilation and service deployment
	Examples

	Resources
	Common
	All

	Command Tools
	grid-cert-request
	References
	Index

